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SUMMARY

Work under the present contract has been dedicated to acquiring a detailed

understanding of the fundamental mechanisms governing the dynamics of Josephson

junction devices, with a view to employing this knowledge in the design of practical

Josephson devices. Particular attention has been given to the questions of the inter-

play between coherence and chaos, and to determining the limits of stability of

coherent states. A combination of analytical, computational, and experimental meth-

ods has been employed in order to maximize the results obtained.
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BACKGROUND

The strong potential of Josephson tunnel junction devices in high-perfor-

mance electronic applications has been recognized for a number of years, In a few

areas, notably those involving applications of dc SQUIDs, this potential has been

amply realized: measurements of extremely weak magnetic fields, with sensitivities

approaching the fundamental quantum limit, have now become routine using these

devices. Another area where Josephson devices show considerable promise is the

realization of circuit elements - oscillators, mixers, amplifiers-- for high-sensikivi-

ty, low-noise microwave or millimeter-wave receivers. Notable practical progress has

also been achieved in this area: Josephson SIS mixers have been installed and func-

tion routinely in the high-sensitivity receivers employed in several radio-astronomi-

cal observatories throughout the wnrld. However, in this area, we are still fairly far

from realizing the full potential of the Josephson approach.



Our w-'-'. under the present contract, as well as that performed in the con-

text of ou. previous ERO contract (no. DAJA37-82-C-00S7, 1982-1985), has been de-

dicated to acquiring a detailed understanding of the fundamental mechanisms go-

verning the dynamics of Josephson junction devices, with a view to employing this

knowledge in the design of practical Josephson devices. Work under the first con-

tract was devoted to understanding the basic mechanisms of fluxon (fluY quantum,

or soliton) propagation in Josephson junctions. The practical consequence of this

work, very briefly summarized, was that we were able to construct a "catalog" of

the basic fluxon dynamic configurations responsible for various, experimentally

observed phenomena. Under the present contract we have extended this study to

the understanding of the more subtle question of the complicated interaction bet-

ween coherence (i.e. regular, steady fluxon propagation) and chaos. Chaos in dy-

namical systems has, in recent years, become an active field of independent study.

with an impressive array of theoretical and computational results. From the practi-

cal point of view, on the other had, in particular for electronic applications, chaos

represents "noise", and hence is a phenomenon that one wishes to avoid. Conse-

quently, in this context, one studies chaos with the objective of "designing around

it". A second, closely related, question is the analysis of the stability of coherent

states. Often (but not always) a loss of stability signals the onset of chaos. But

even when a stability boundary indicates a transition from one coherent state to

another, understanding of this fact constitutes essential knowledge for the device

designer.

The most significant results that we have obtained under the present con-

tract are summarized briefly in the following section; they are described in more

detail in the papers enclosed as appendices. As in the work under the previous con-

tract, we have herein attempted to combine analytical, computational, and experi-

mental work in such a way as to maximize the illumination cast on any given ques-

tion.

SUMMARY OF MOST IMPORTANT RESULTS

The influence of small external perturbations, both periodic and random, on

the coherent motion of fluxons in Josephson junctions, and hence on the linewidth

of the microwave radiation emitted by such junctions, was studied in Refs. I and 4.

The work in Ref. I was based essentially on numerical simulations of the sine-Gor-

don model of the Josephson junction, subjected to small external perturbations:

that in Ref. 4 was analytical work based on the soliton perturbation theory of

McLaughlin and Scott. The question is of considerable practical interest: experi-

ments have shown that the relative linewidth of the radiation emitted from a Jo-

sephson junction oscillator, associated with resonant fluxon propagation. can be as

narrow as 10-07 it is just this fact that renders the device interesting for elec-

tronic applications.



Knowledge of the intrinsic, i.e., "classical", stability of coherent fluxon dy-

namical states is clearly of fundamental importance for the device designer. This

question was addressed in Refs. 5, 6, 10, IS, and 17. Refs. 5, 6, and 10 were directed

toward the question of the "birth" of coherent fluxon states, which give rise to ze-

ro-field steps in the current-voltage characteristic of the junction, from the uniform

background state (the so-called McCumber state). The basic analytical procedure, in

approximate form, was developed in Ref. S. Comparison with numerical and experi-

mental results demonstrated the essential correctness of the procedure. Ref. 10

extended the analytical procedure, giving an exact linear stability analysis of the

McCumber state. Refs. 1S and 17 were dedicated to the "death" of coherent fluxon

states by means of switching from the top of zero-field steps to the so-called gap

state. Here, since the analysis is (at least so far) intractable, the approach was

strictly numerical. In Ref. 15 a direct numerical integration of the model equation

was used. In Ref. 17, instead, numerical techniques were used to establish the exis-

tence (and non-existence) of heteroclinic connections between the fixed points of

the reduced ordinary differential equation associated with the model partial differen-

tial equation.

At the present time, the Melnikov-f unction technique is perhaps the best-de-

veloped and most reliable theoretical tool for studying the onset of chaos in dyna-

mical systems. In particular, this technique permits analytic calculation of the con-

ditions for the existence of Smale-horseshoe chaos in perturbed dynamical systems

that are "sufficiently close", in a function-space sense, to an integrable system. A

Smale horseshoe contains a countable set of unstable periodic orbits, an uncount-

able set of bounded nonperiodic orbits, and a dense orbit; consequently, the exis-

tence of a Smale .horseshoe can be viewed as the first step toward a possible

chaotic behavior. The Melnikov-f unction technique was applied to Josephson junction

devices, and related dynamical systems, in Refs. 3, 7, and It. Direct numerical integra-

tion of the model equation was used to check the validity of the predictions of the

Melnikov approach regarding the threshhold for the onset of chaos.

A topic that continues to attract research interest, even though not directly

connected with the interplay between coherence and chaos, is the influence of the

dissipative parameters in the sine-Gordon model of the Josephson junction on the

dynamics of fluxons. Ref's. 8, 9, and 14 have provided interesting new results in this

connection. Ref. 14, in particular, has extended the usual "isolated" sine-Gordon mo-

del of the junction to a model in thermal equilibrium with a heat reservoir, thus

incorporating in a natural way the effects of thermal fluctuations on the behavior

of the system. Thermal noise is an important physical phenomenon, even at the very

low temperatures at which superconductive Josephson devices work; consequently,

an understanding of thermal effects is crucial for the accurate modelling of practi-

cai electronic devices.

As indicated above, Josephson fluxon oscillators show considerable promise

,or applications in high-frequency radio receivers. Since the power available From a
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single such oscillator is somewhat low, a natural approach has been to construct

arrays of oscillators, which, of course, is reasonable if the individual oscillators of

the array can be made to work in synchronism. In Ref. 19, a first step has been

taken toward the theoretical study of phase-locking of fluxon oscillators. The

approach adopted has the attractive feature of reducing the problem of phase-lock-

ing to the study of the fixed points of a two-dimensional functional map.

Finally, new computational techniques for the study of particular aspects of

Josephson junction dynamics have been developed in Refs. 16 and 20. Ref. 16 illus-

trates the application of the cell-to-cell mapping technique, originally developed for

the study of other dynamical systems, to the rf-driven Josephson junction. This ap-

proach permits a complete mapping of the basins of attraction of the various attract-

ors, both periodic and chaotic, of the system with an enormously reduced computa-

tional cost. In Ref. 20, study of the complicated dynamics of the sine-Gordon model,

in a regime characterized by chaotic behavior, is reduced to the study of a finite set

of modal equations, with the nonlinear modes chosen from considerations of spec-

tral theory, resulting once again in a significant reduction of computational effort.
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Simulation studies of radiation linewidth in circular Josephson-junction fluxon oscillators

F. If, P. L. Christiansen, R. D. Parmentier,* 0. Skovgaard, and M. P. Soerensen
Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 8 November 1984)

Detailed simulation studies of the dynamics of fluxons in long circular Josephson tunnel junctions
under the influence of external microwave radiation and internal thermal noise are presented. The
simulation algorithm uses a pseudospectral method well adapted to vector processors (CRAY-I-S),
which gives a speed-up factor in computing time of typically 22 in comparison to conventional
high-speed computers, and also provides results with a relative accuracy of less than 10-s thereby
making possible the study of the very narrow radiation linewidth of such oscillators. Comparison of
calculated linewidths with experimental results shows good agreement.

I. INTRODUCTION p. -q', -sinp-aqp +y+q(xt). (2.1)

Josephson-junction fluxon oscillators continue to attract Here ip is the quantum phase difference between the two
research interest both theoretically, in studies of nonlinear superconducting layers in the junction. Space and time
wave dynamics, and experimentally, where the very nar- are normalized to the Josephson penetration length
row lincwidth of the emitted microwave radiation prom- Xj=(4o/27rjoLP) /2 , and the inverse of the plasma fre-
ises potentially interesting applications) This very nar- quency w0=(2rj0 / 0 C)tfl, respectively, where 4 )o is the
row licidth makes the numerical study of the detailed magnetic flux quantum given by 4)0=h/2e=2.064
dynamics of such oscillators very CPU time consuming. X 10- " Wb. L. and C are the inductance and the capa-
In order to overcome these difficulties we have developed citance per unit length of the junction. The first of the
a pscudospectral algorithm for solving the perturbed perturbation terms on the right-hand side of Eq. (2.1)
,ine-Gordon equation which describes the oscillator. This represents the loss due to tunneling of normal electrons, in
ailgorithm employs a Fourier transformation of the spatial normalized units a=G/lwC, where G-1 is an effective
,iriable together with a finite-difference approximation to normal resistance per unit length. The second term is the
h time variable. The extensive use of fast Fourier normalized bias current ry measured in units of Jo the

transforms in the algorithm has made the implementation maximum Josephson current per unit length. In this pa-
natural on a CRAY-I-S vector processor. The Fourier per we include a third term 77(x,t) representing either an
treatment of the space variable requires spatial periodicity externally applied sinusoidal driving term connected to
in the model. In physical terms this means that we are the bias, or an internal thermal noise term connected to
studying a circular junction oscillator of the type first the loss. In this second case we assume a distributed
proposed by McLaughlin and Scott. 2 This device, as well Gaussian white noise with zero mean value.
as providing a convenient mathematical model because of The normalized length of the Josephson junction
periodic boundary conditions, has in recent years begun to l =L/)Xj is assumed to be large compared with unity and
attract research interest in its own right.' 4  the normalized width w-- W/X small compared with un-

The paper is structured as follows. In Sec. II we ity, allowing us to use a 1 +1 dimensional model. ' lie.
describe the mathematical model of the circular junction. cause the aim of this investigation is to isolate the influ-
Details of the numerical techniques employed are present- ence of the term ir(x,t) on the solution to Eq. (2.1) we
cd in Sec. Ill. In Sec. VI we study the behavior of the os- avoid phenomena connected with collision with junction
cillator under the influence of a sinusoidal driving term in boundaries by considering a long annular junction. There-
the bias current, which models external microwave irradi- fore, we demand spatial periodicity with period I in the
ation. Section V contains calculations of the linewidth two physical quantities, the voltage drop across the june-
under the influence of Gaussian white noise, which tion:
models internal thermal noise in the junction. In Sec. VI
we compare our results with existing experimental obser- V=, (2.21
,.ations. In all of the sections we are focusing on a config- 21r
uration with a single propagating fluxon, which corre- and the current along the junction,
sponds to the first zero-field step in the current-voltage
characteristic of the oscillator. I= --io.Jqx (2.3)

11. MATHEMATICAL MODEL i.e., boundary conditions

As a model for the Josephson tunnel junction of overlap

gecometry we use the perturbed sine-Gordon equation,' q5z(O,t)=9 1 (It) . (2.4b)

32 1512 @1983 The American Physical Society
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The fluxon traveling wave solution to the unperturbed [Calcuate initial
version of Eq. (2.1) is given by' conditions

S= 2 sin-l[cn ( ,k)] ,(2.5) oke3 n

Wte 4=(X- -ul)/[k(l -u 2 )"/]. Here u is the velocity of J odslutio
the wave and k is the modulus in the Jacobian elliptic Calculate Transform solution
function.! Spatial periodicity requires ,/(1-u) 2  , nonlineaor term to k-spoce via FFT
=2nkK(k), where n is the winding number, i.e., the num- Make soluAdd sinusoidol
ber of fluxons minus the number of antifluxons, and K(k) aperiodic or noise drive
is the complete elliptic integral of the first kind. In Ref. 9 Transform solution Advance solution
it is shown by Hamiltonian perturbation theory2 that the to x-space via FFT one timestep,
steady-state fluxon velocity dependence on the loss and
bias parameters is FIG. I. Schematic diagram of numerical simulation pro-

U = 1/ti +(4a'/ry)1)1 / 2
, (2.6) cedure.

with a'=aE(k)/k, where E(k) is the complete elliptic
integral of the second kind. For I>8 (assuming n=l) ing sinp and then transforming again to k space as indi-
Eq. (2.5) reduces to the kink for the infinite line cated schematically in Fig. 1.
T-=4tan-(ee) with 4=(x-ut)/(l-u)l 2 , and the Figure 2 shows the computed 4p1 as a function of time
velocity given by u = 1/11 +(4a/trY)2]"/ 2. In the numeri- at an arbitrary point on the junction. This signal consists
cal simulations we have used 1=8, 12.8, 20, and n = 1. of an almost-periodic sequence of pulses. In fact, it is the

deviation from perfect periodicity that gives a nonzero
linewidth of the radiation. Since the deviation is small it

III. NUMERICAL TECHNIQUES is necessary to devise a very accurate method for deter-

rlic .cry narrow linewidth of the radiation emitted mining the revolution periods T for the circulating flux-
from a Josephson-junction oscillator (less than I kHz at on. We do this by calculating T, as the time for the

10 GF-z)' 0 suggests that a relative numerical accuracy of mean value of the phase over x to change by 2r. The

at least 10 - 7 is essential. We solve Eq. (2.1) numerically fundamental frequency of the signal then becomes

by using a pseudospectral method.t" This method, a fo=l/(Tn), where brackets denote an average value.

Fourier transform treatment in space together with a leap- We take the power spectrum of the signal near fo to be

frog scheme in time, has the advantage of simplicity and the distribution of the computed values of I/T,.

high-order accuracy in the approximations to the space Figure 3 shows the calculated TM's in a computer ex-

derivatives. Expansion of the fluxon wave into truncated periment with the driving term ,7=0 in Eq. (2.1). As can

,cries of sines and cosines demands periodicity not only in be seen from Fig. 3, the relative accuracy

€f and qT, but also in 9 itself. Observing that the fluxon AT/( TM) < 10- 8. In fact, examination of the numerical

1s a localized kink connecting two ground states separated output shows that it is approximately 7X 10- 9. The long

by 2- we introduce a new periodic function ip-2rx/l transient arises from the fact that the initial conditions

whose Fourier representation we denote W(t) with the su- given by

perscript p =0, ± 1 ..... ±PMro. p(x,Ol=f(x,O)-sin-1(Y) , (3.3a)
Transforming Eq. (2.1) into the following set of ordi-

nary nonlinear coupled differential equations: q)(x, - At)=f(x, -At)-sin-(Y) , (3.3b)

- k ,(t ,)_FVsinqoj where f(x,t) is the fluxon traveling wave solution to the
unperturbed sine-Gordon equation as given by Eq. (2.5)

kr =2"r-p/l, p=O,±l ... -±p,. (3.1b) 4 T

in which FP and NP are the Fourier components of sinqp 3
and Y1, respectively, and 5p, denotes the Kronecker sym-0
hnl. and using second-order central differences to approxi- >
male the time derivatives we get an explicit scheme for
the time evolution of the Fourier components

)- -a-t1- ICL
(P 2- th°l r+/lt/ , (32) .

P 480 500 520 540
-- A~t(Sf+NVf)]/ I +a~t/2), Ip >0, (3.2b) t

FIG. 2. Time dependence of the space derivative of the flux.
where SP equals FPlsinqyp at time jlt, calculated each on wave form, showing the nth period of revolution T, for

time step by transforming V, + 1 back to x space, calculat- a=0.01, y=0.02, i7=0, and 1= 12.8.
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Revolution period T, from Hamiltonian perturbation theory, Eq. (2.6). The re-
9.482515 sult is seen in Fig. 4. The deviation for large bias values is

expected because the perturbation theory is only valid for
small y values.

9.482510
IV. SINUSOIDAL DRIVING TERM

In this section we investigate the behavior of the fluxon
9.482505 velocity when the driving term is given by

7l(x,t)=7(t)=7losin(lt) , (4.1)
9.482500 120 140 160 180 200 220 as a function of the driving frequency 0. This might be

considered as a model of microwave irradiation of the
Revolution number n' junction. Using the definition of the normalized momen-

FIG. 3. Revolution period T, as a function of revolution tum
number n for a=0.0l, y=0.02, i7=0, and 1=8 showing high , (
level of computational accuracy achieved. p(t)T )pqip, dx , (4.2)

and separating the phase into a kink part and a back.
and sin-'(y) is the ground state, are not exactly equal to ground part" qs(x,t)=qk(x,t)+q,*(t), and assuming that
the final propagating configuration. the length of the junction is large, allowing expressions for

We note at this point that the accuracy of the results the infinite junction to be used, we get the following equa-
was checked by doubling Pm, in Eq. (3.1b), in order to tion for the momentum pk of the kink,
ensure that no spurious Fourier modes due to the discreti-
zation in x space are produced, and halving At in Eqs.
(3.2). The values used for p,,,., ranged from 64 to 256 and fn
those for At from 0.075 to 0.0025, depending on the pa- 7 (a)
rameters I and y.

The computer program was implemented on an IBM 0.115
3033 in double precision (approximately 16 significant
digits) and on a CRAY-I vector processor in single pre- 0.110
cision (approximately 15 significant digits) using optimiz-
ing FORTRAN compilers. In the former case we have used 0.105
the IMSL-routine FFT2C for fast Fourier transform.' 2 In
the latter case, by making full use of vectorization of the 0.100
computer code and the CRAY routines for Fourier
transform and vector copying CFFT2 (Ref. 13) and 0.095
CCOPY (Ref. 14) we gained a speed-up factor in comput-
ing time of 22. Each long simulation requires typically 0.090..
5 x 105 time steps on a 512-point spatial lattice and uses 0 25 5o 75
approximately 10 min of CPU time on the CRAY-I-S as Revolution number n
opposed to approximately 4 h on a scalar machine.

Finally, we have compared the steady-state fluxon ve- Revolution frequency fn
locity, given by u-.l/(Ta), with the predicted value

(b)

ucac- Upet 0.10550

0.10545

10-4

0.10540

0.0 0.1 0.2 0.3 0 25 50 75
Bios current 7 Revoluti6n number n

FIG. 4. Difference between average propagation velocity as FIG. 5. Revolution frequency f, as a function of revolution
computed numerically u,.1 and calculated from perturbation number n for sinusoidal drive, 7/(t)= Osin(flt), with a =0 0 1.
theory u... from Eq. (2.6) as a function of the bias for a=0,01, y=0.02, f1=0.86, 71o=0.01, and 1=8. (a) Numerical simula-
77 =0, and 1=8. tion. (b) Kink model.
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P+ ap. k=1rjy i~ oi~ t de + ] de01tan-(/cc)

dr 4 a dt +dt I and (4.5b)
(4.3) 02=tan- 1I [afl/[( I -y 2)112-2] f1 •

Thus, the background motion becomes an effective The instantaneous kink velocity is then calculated from
driving term for the kink part. From Eq. (2.1) we derive p =u/(I-u 2)/ 2 . In order to compare this approximate
the linearized equation for 0 =4p +sin-'(y), assuming theoretical description with the numerical result we calcu-
that ®<< 1, late the nth period T. according to the formula

± +, d- - +H(-y 2)1 /z^ n=-osinfflt) (4.4) T., udt=1 ,

dr with (4.6)
Combining Eqs. (4.3) and (4.4) we obtain for the kink +P)]/

momentum u =p,/[ I

77o Figures 5-7 show a comparison of the results from thisp 4 a + 2+a2)1/2 sin(fl-O0) linearized model and from numerical simulations of Eq.
4 a (a2 sn(2.1) with fl=0.86, 0.89, and 1.10, respectively. In all

o"1 cases it is seen that the kink model is able to reproduce
21/2 _f]2j 2  2 W1 1/2 cos(fIt-0 2), the fluctuations in the revolution frequency f,, = I/T, in1a J great detail.

(4.5a) As a measure of the amplitude of the frequency fluc-

Revolution frequency fn Revolution frequency fn
(o) (a)

0.1220
0.110

0.1215

0 105 0.1210

0.1205
0 100

0.1200

0.095 ,0.1195
0 25 50 75 0 25 50 75

Revolution number n Revolution number n

Revolution frequency f, Revolution frequency f,

(b) (b)

0 1055 0 12114

0.12112

0 1053

0 25 50 75 0 25 50 75

Revolution number n Revolution number n

FIG 6 Revolution frequency f4 as a function of revolution FIG. 7. Revolution frequency f. as a function of revolution
number n for sinusoidal drive, 0(r)=7osin(f1t), with a=0.01, number n for sinusoidal drive, 77(t)= iosinfli ), with a=0.01.

-0 02, (1 =0.89, qo0=0.01, and 1=8. (a) Numerical simula- y=0.05, fl=1.10, 7o=O.O, and 1=8. (a) Numerical simula-
tion 'hi Kink model, tion. (b) Kink model.
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Standard deviation o Hamiltonian perturbation theory for the fluctuations Au
in the fluxon velocity leads to the power spectrum for
Au'

0
i10-1 1 o a+,

Sf 0 a- (5.4)

lo-3 wz+a 2

, with the average velocity uo given by Eq. (2.6). By a
Fourier transform of Eq. (5.4) we obtain the autocorrela-

'", ,'tion function for Au as an exrgonential

1 0-6'  N"6 ea
I 0 sj " 7("/1 ....... ,,Rfl(')-- , (5.5)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Thus Au(t) is a normal process with zero mean and

Driving frequency C) standard deviationis

FIG. 8. Standard deviation of revolution frequency a,, as a o,'( 1 -Uo) /4

function of driving frequency fl. Solid curve, numerical simula- o',A 4a=/2 (56)
tion; dashed curve, kink model; parameters, a=0.01, y=0.02,
7o= 0.01, and 1=8. Defining the period of a fluxon revolution according to

Eq. (4.6) we calculate the average frequency fluctuation as

tuation, which is essentially the linewidth of the oscillator, the average of the instantaneous frequency fluctuation
we have calculated the standard deviation of the revolu- Au/I over one average period of revolution
tion frequency a/=C((f,,-(f.,)) 2 )]' 2 for values of the I t+(T)
cyclic driving frequency fl between 0.4 and 2.0. Af= . .f, Au/Ildt. (5.7)

The full curve in Fig. 8 shows the results from the nu-
merical simulation and the dashed curve those from the From Eq. (5.7) it follows that Af has a normal distribu-
kink model. The kink model predicts a resonance just tion with zero mean and the standard deviation,"'
below the plasma frequency fl = 1, whereas the numerical 2 ep-a/o /
simulation yields this peak at a somewhat lower frequen- A = I - ex(al/uo8
cy. Moreover, the numerical results exhibit a hysteresis I a
not seen in those of the kink model and a difference in A numerical simulation with ',,=8.8X 10- 4 is seen in
scale. The discrepancy in resonance frequency and hys- Fig. 9 showing a typical frequency distribution of If
teresis behavior is attributable to the fact that we have Fig. 9 songamtal frequency dsuTionnc-
used a linearized kink model. Presumably, the use of a abt the tal fee n aud the cowe-
higher-order expansion in Eq. (4.4) would yield a behavior
analogous to that of a soft nonlinear spring' 6 thus reduc- linewidth is

ing these discrepancies. It is not clear, however, to what Af , 02 = 8 oa& (59'
extent the difference in scale would be resolved by such a
refinement, when Af is normal distributed.

Figures 10 and 11 show a comparison of the standard
V. GAUSSIAN WHITE NOISE deviation predicted by this model Eq. (5.8) and the results

The term (x,t) in Eq. (2.1) is here considered to be Distribution density
Gaussian white noise with zero mean (ti(x,t))=0 and
autocorrelation function 3.0X 0s

R (,,r)= (71(x, t)7(x +, t + r) =al5()6(r) . (5.1)

The variance of the noise a2 is connected with the loss a 2.0xio0
and the absolute temperature T through'

a'?=41rakT/Vjokj , (5.2)

where k is the Boltzmann constant. 1.0x 101

In the vectorized algorithm we find it convenient to in-
troduce the noise term in p-t space, NP(t), as

.V( =F- u xp (0 0, )](5.3) 011
V 0.046782 0.046784 0.046786

where F -' denotes the Fourier transform from wL to t Revolution frequencies f
space, and 8, and 0, are stochastic variables uniformly
distrbuted between 0 and 21r, with an upper limit in p FIG. 9. Distribution of revolution frequency f.. Numerical
and w of p,, = I/2A.x and wmaz--=r/At, Ax and At being simulation with Gaussian noise drive: a=0.01, y=0.034,
the resolution in space and time, respectively. Standard a,=8.8x 10-', and 1=20.
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Standard deviation o7, from the numerical simulations for the lengths 1 = 8 and
1= 20, respectively. As can be seen, the model is able to

1 0-'(a predict the right qualitative dependence on the length, the
noise amplitude, and the bias, but the model predicts an
overall standard deviation that is about a factor of 10 too

10-s a,,=0.20 large. The reason for this discrepancy is at present not
ar,-0.10 known.

10-6 n=O .O5  In closing, we note that for y values near 0.3 it was
found necessary to augment the time resolution (by reduc-

07 an=0.01 ing At) to avoid spurious peaks in Fig. 10(a). The ex-
1 1 7 * I istence of such spurious peaks might be an indicator of

0.0 0.1 0.2 0.3 0.4 the onset of chaotic behavior at nearby points in parame-
Bias current Y ter space. In fact, parameter values y=0.3 with a=0.01

Standard deviation o'f lead to chaotic creation of fluxon-antifluxon pairs in the
study reported by Eilbeck et al.2

VI. COMPARISON WITH EXPERIMENTS
I C-The rapidly decreasing linewidth with increasing bias

1 0-4  shown in Figs. 10 and 11 is in qualitative agreement with
the experimental observations of Fig. I in Ref. 10.

10-5  an=0.20 To compare quantitatively the calculated results with
an=o.10 these experiments we use in Eq. (5.2) data reported by

10-6 ojn=0.05 Scott et al. 5 For the junction No. N25L, assuming a tern-

0.0 0.1 0.2 0.3 0.4 perature of 4 K, Eq. (5.2) gives a,,=0.0052. Noting from
Bias current Y Fig. 9(a) that af scales linearly with or,,, we calculate from

JIG 10. Standard deviation of revolution frequency or/ for Eq. (5.9) a normalized half-power linewidth
white Gaussian noise drive as a function of bias current ?,, for Af1/2 =5.5X 10-7 at y=0.2. Taking as the normalized
S=0.01, 1=8, and a,=0.01, 0.05, 0.10, and 0.20. (a) Numeri- resonance frequency fo=uo/l,-O. 125 we calculate a rela-

cal Nimulation. (b Hamiltonian perturbation theory. tive linewidth Af 1/2/fo=4.4X 10- 6. The physical reso-
nance frequency for junction No. N25L was 2.3 GHz.'

Stc-ndard deviation af This yields a physical linewidth of 10 kHz. Comparing
with the experimental results shown in Fig. I of Ref. 10
and noting that y=0.2 corresponds to a bias point near

03  o(a) the bottom of the zero-field step, we find excellent agree-
ment. The same calculations for junction No. N53C,5
again for T=4 K and y=0. 2, yield Af 1 21/fo

, Oys a,=0.20 =2.3X 106. The physical resonance frequency for junc-• a'=O. 10a, =0.o0 tion No. N53C was 8.3 GHz, which leads to a physical

-n=O.01 linewidth of 18 kHz, once again in excellent agreementwith experimental results.

1-1 I ' I

000 0.04 0.08 0.12 VII. CONCLUSIONS
Bias current I/ Computational studies of the linewidth of the radiation

Standard deviation al emitted by Josephson junctions require extremely high
resolution. For this reason we developed a pseudospectral

10-2 (b) method for solving the nonlinear dynamical equation
describing a circular Josephson junction oscillator. Be-

1043 cause the algorithm makes heavy use of fast Fourier
transforms it was implemented on a CRAY-I vector pro-

10 "' a,=0.20 cessor. Driving terms corresponding to physically realis-
a,,=0.I . tic situations, i.e., sinusoidal microwave irradiation and

10-5 a, =O.05 internal thermal noise, were considered. In the second
case the computational results were compared with exper-

10-s I imental results reported in the literature, and excellent
000 0.04 0.08 0.12 qualitative and quantitative agreement was found. In ad-

Bias current 7 dition, in both cases we have compared the computational
FIG I I. Standard deviation of the revolution frequency af results with approximate analytic results based on pertur-

fnr while Gaussian noise drive as a function of bias current y, bation theory. Here the agreement was qualitatively good.
for Y =0 01. 1=20, and a,=O.jl, 0.05, 0.10, and 0.20. (a) Nu- but quantitative discrepancies were found, indicating a
rnrc;di imulation. (h lamiltonian perturbation theory. need for further development of perturbation theory.
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A NWCIIANICAL ANALOG FOR THE DOUBLE SINE-GORDON EQUATION

Mar o SALERNOt
( cm,r Ifr Nonlineur Studies. Los Alumos National lxborutorv. Los Atlius. NM 87545. USA

Ru'vicd 21 January 1985

A mcchani:all analog for the double sine-Gordon equation is proposed and used to analyze solitary solutions for arbitrary
pirimeter values. The extension of this analog to other equations of the multiple sine-Gordon class is also considered.

I. Introduction which just represents the first step toward a model
for linear chains of atoms on generic substrate

lTe .inc-Gordon equation (SGE) has received periodic potentials. Eq. (2) is also connected with
nmuch attention during the past years in connection several interesting physical phenomena, such as
%iih a remarkable variety of problems of physical spin dynamics in the B phase of superfluid 3He [41,
inicrest [1]. In condensed matter physics the SGE propagation of resonant ultrashort optical pulses
ha.s been used to model one dimensional chains of through degenerate media [5], nonlinear excita-
,.oni on a periodic substrate potential. In this tions in a compressible chain of xy dipoles under
:,,ntcxt. however, while the regular structure of conditions of piezoclectric coupling 16], ferromag-
'.uch chains makes it natural to consider periodic netic chains [7), organic conductors [8, 9], etc.
ptcniials. there is no obvious reason for restrict- Since the DSGE is not integrable (the only
Ing these to single sinusoids. This fact has led to integrable equation of family (1) is the SGE), it
,1 1ntcr.ising interest in constructing modified has been investigated numerically by several
,'ne-Gordon equations with periodic but not authors for particular values of parameters A1, A,
'anu.oidal potentials [2]. One way of doing this is [9, 101. Depending on these values, different typi-
by including in the substrate potential Fourier cal solitary wave solutions were found. A complete
cnmponents higher than the sine-Gordon one, this numerical investigation of the dynamical proper-
leading to the so called "multiple sine-Gordon" ties of eq. (2) with X,, X2 varying in the range
cqu.t otls 13]: (- OO, + 00) is, however, still lacking [II]. Further-

more, in spite of their physical relevance, very

+ X sin (./i)- 0. (1) little exists in the literature on equations of type
,-I (1) for N> 2.

Among these equations a relevant role is played by In the present paper we propose a mechanical

the double sine-Gordon equation (DSGE) (N -2 analog for the DSGE which easily extends to all

I, Cq (1)): the equations of type (1). The first mechanical
analog for a soliton equation was given by Scott in

,- , + A s - (2) 1969 for the SGE [12]. More recently, Cirillo et at.sin - + sin (0/2) - 0, have constructed a more sophisticated SGE ana-

i l)'ptminto di Fisica Teorica e sue Metodologic per le log, and used it to solve practical problems in the
N cowv Applh.atc. Univnrsiti di Salerno. 84100 Salerno, Italy. Josephson effect area [13]. The mechanical analog

0167-2789/85/$03.30 0 Elsevier Science Publishers B.V.
(North-I !olland Physics Publishing Division)
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proposed hcre is a natural extension of Cirillo's the two pendula are rigidly fixed to the axis of the
one to the case of eqs. (1). The aim of this paper is transmission line. The rubber rod B provides the
t, give a simple and unified picture of some of the elastic coupling between the sections while the
propertis of equations of type (1), by visualizing mechanism C is realized with a gear of ratio I and
lhen on this mechanical analog. The paper is connected to the transmission line as in fig. 1. A
organited as follows: we describe the details of the practical realization of a segment of the line is
mechanical analog for the DSGE, and indicate shown in fig. 2. By assuming the dissipative effects
how dynamical equations arise. Next we consider on the line proportional to 0,.,, we have for the ith
',,litary wave solutions of (2) both in terms of the section the following difference differential equa-
n1c~hanical analog and by direct integration of the tion:
equation. A brief discussion on the extension of
tfhe model to equations of type (1), and perspec-
ttves of future studies will be given in the conclu- -m gl sin(o, + 0)
,ions. - M 28912 sin (-0,/2 + .(3)

Here I denotes the moment of inertia, a the

2. Experiment, model damping constant, k the torque constant of the
rubber rod, and mg 1 ,m 2g( 2 the gravitational

The generic section of the mechanical transmis- restoring torques of the pendula per section of the
ion line for the DSGE is shown in fig. 1. It line, 0 and a, are initial phase angles of the two in

consists of the following elements: an aluminium pendula with respect to the vertical line, fixed

disk A. a piece of solid rubber rod B, two pendula when the gear wheels are assembled into the gear-

respectively of length 1,, 12 and mass m, m2 , and ing mechanism C. (Since the two pendula are

a gearing mechanism C to provide coupling be- rigidly connected through the gearing mechanism

t%,een the two pendula. The aluminium disk and C, the introduction of two phase angles appears M
redundant; however, it will be useful for later
developments. Furthermore, we assume the mech-
anical line to have infinite length, so that we will

+ + not be concerned at the present with boundary
conditions).

Taking the ith section to be of length Ax. eq.
(3) is written as

A 11 g (U ) 4,.,, - k,1 x 1g )( ,,, - 2 4, + 0,_ , / '

- (a/g) -, - ni1isin (, + 6)
B -mIl sin (0,/2 + t,). (4)V

1 When a - 0 (lossless case) eq. (4) may be obtained c

from the hamiltonian of the collection of pendula.

Ii. I A s wct'n of ihe mcchanical line for the double sine- +V(O,)} (5)
(w.rdonn cquatio5n
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Fig. 2. A practical realization of a segmen t hc DSGE-line.

in the external potential 0 = 0, 4,= 0 in eq. (8), and a zero point line as

In,/ Cos(.0,+ 0)shown in fig. 3a. (The white pendulum denotes the
(~i,) -co(~, 6)one with mass ml1 , while the black denotes the one

-ni,I, cos (4),/2 + 4).(6) with mass mi2 -)

In similar way it is seen that the cases A, > 0,
\leaiuring distances In units of (k/g)'/ 2 tdx and A 2 < 0; X I < 0, X 2 > 0; '\I < 01 X2 < 0; in eq. (2)
lime an units Of (1/g)1/ 2, eq. (4) reduces, in the are respectively obtained by letting 6 0, 4,=1r

1(uIit .1~ 1 0. to 8 = r, 4,= 0; = ir, 4 -ir in eqs. (7), (8), this
corresponding on the mechanical line to having

-s .yo, - At sin~ -A k2 sin (-0/2) fixed the zero points respectively as in figs. 3b, 3c,

-A ,cos 0 ,cos(.0/2), (7) 3d.
It is worth noting, however, that the model

%ihcro: - a/,g and presented (i.e., eq. (7)) is more general than the

A - ia coO. A = n2! cos4,,(8) DSGE, having the possibility of freely fixing the
III I CO 0, 2 M12CO (8) initial relative phase angles (8 ,) of the pendula

V - 1)/2.A 21 \2 A)/ 2. by properly assembling the gear mechanism C.

When a 0 and 6=0 (mod 1r), -,=0 (mod r), a b C d
eq, (7) is i ecognized as the DSGE with 1A1I1 = nil/,,
A .~=~~ From eqs. (7)-(8) it is seen that a

definate choice of the initial phase angles 9., of
the pendula fixes the relative signs of Al and A2. iI
1I his fixes the zero points of the mechanical line X) > 0 0 1< 0 ,
1i . (ti points from which to measure angles) for 02> X0 02> 02

,in,, particular combination of the signs of A1, A 2
in eq (2) as follows. For A,1> 0, A\2 > 0 we have Fig 3. Zero paint lines for different values ofAt, A 2.

S.1k --
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3. Behavior of the potential energy and solutions of point line is fixed as in fig. 3c. This is a stable
DSGE equilibrium position (mod41r) if \ 2 a 41JA 11 and

unstable if A2 <41 1 . In this last case. however.
Being in general possible to think of the motion two stable equilbrium positions are found at =

of a kink of eq. (2) as the motion of a classical +6 (mod41r) where 6 = 2cos-'(A 2/4A 1 1). The
particle in a reversed potential -v(o) potential energy for X2 a 41I I is found to have

()= X, cos ( + X2 cos(-/2) (9) absolute minima at S6- 0 (mod41r) and absolute
maxima at 0 - 2fr (mod41r); while for X2 < 41,,

it is useful to consider how the potential energy of
the pendula varies as XI, X2 Z 0. Let us start by solute maxima at 0--2 ± (mod4) and relatbe

analyzing first the cases A, >0, A 2 > 0 and A1 <0, maxima at *-0 (mod4).
X>0. For AI1> 0, X2 > 0 one knows from the The corresponding behavior of the potential en-
previous discussion that the zero point line is with crgy for negative values of X2 is obtained from the
both pendula down as in fig. 3a. This corresponds previous case (X 2 > 0) by letting , -. 0 + 2,-, in
to an absolute minimum of the potential energy.~eq. (6). Fig. 4 summarizes the different typical
Starting from p = 0 and letting the white pcndu- behavior of the potential of the pendula as AX.
lum movc by 2r, one reaches the configuration in X2 C (-00, + oo). The lines A 2 = ± 4X, separate
fig. 3b. It is easily verified that this is a stable regions of the X,-X, plane in which the configura-
equilibrium configuration if the ratio of the gravi- tions of fig. 3b and 3c are stable or unstable
tational torques of the black and white pendula is according to the previous discussion. Of these
< 4. i.e. if X2 < 4X,; otherwise it is unstable. For eight regions. however, only four are physcall\

,\, < ,.,\ in fact. the potential energy is found toAe< ab t min ma t pential energy 0 (d 4 te significant since the other four are obtained simpl.
absluteminima at 'p= 0 2mo (mo, 4) ad a u texima by shifting the potential energy. We therefore will

focus in the following only on regions A. B. C. D
at p= ±S (mod4w) where -2cos-'(, 2 /4X,) of fig. 4 (case X2 >0). From the behavior of the
± 2 : while for A2 > 4A, the relative minima at

+ 2 (mwhileo 4A) bec e labs tie mima (e potential energy in these regions it is evident that
2,7 (mod 41r) become absolute maxima (see 41r-kink solutions of the DSGE are possible onl,,

fig. 4). A qualitatively different behavior is ob- for parameter values of AX, X 2 corresponding to
tained when X <0. A2 > 0. In this case, the zero regions A. B, C, of fig. 4. These solutions are easil',

seen on the analog. A 4r-kink solution of eq. (2)

~? corresponding to A,, A I > 0 is shown in fig. 5. We

-2nt 21t see that while the white pendulum moves around
-' -'-.. by 41w, the black one accomplishes a 2- turn.

"0  \ giving rise to a topologically stable 417 jump. The

K/ / "- c 8 / difference between kinks of regions A and B can
0 4 A be seen on the analog as a more rapid variation of

. -. ' "-. Nthe gravitational torques around 'p = 0. For A, < 0.
A 2 > 0 with X2>=41A,147r jumps are still possible

N / -2\(see fig. 6), but in this case the starting and final
0 4rT ". configurations are the ones shown in fig. 3c. Again

it is evident from the mechanical analog that these
2 Oare topologically stable solutions. In spite of the

different shape 4r-kink solutions assume on the
.4 im crcni hchaviour- of tht p,".niial of the pendula as mechanical line (see figs. 5. 6) for parameter value,,

., A , rc ;,iricd in flhc range - . n) characterizing regions A, B, C of fig. 4, it is worth

. . .......
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X1 > 0.

2Tth

Fig 5 A 41r-kink of the DSGE on the mcchanical line for A, > 0, A, > 0.

X <O, X2>0

2 ]>T

Fig. 6. A 4ff-kink of the DSGE on the mechanical line for A, < 0, A > 0, A2 41A I.
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noting that the change of the gravitational torques solitary wave solutions of eq. (2), i.e. solutions of

of the pendula in configurations of fig. 5 and fig. 6 the form
is the same, In region D of fig. 4, two different
types of kinks are possible: a small 28-jump and a ,0(x, t) " 0(M), (10)

big 4-28 one with 8 < r. The first type corre-

sponds on the analog to a transition between the with -(x- uto/V(1 - ), u (-1,1) and
two stable equilibrium configurations at *0= ± satisfying the boundary conditions lira,_ _
in which the black pendula pass under the line (see - ± (0 ± are constants). By inserting ansatz (10)

fig 7)). while the second type corresponds to the In eq. (2) and multiplying both sides by do/di we

transition 8 -. 41r-8 in which the black pendulum obtain (after one integration in )

pass over the line (see fig. 8). Of these mechanical I
analog solutions one can easily find the corre- (d-") + U(O) - E, (11)

sponding analytical ones. To this end we look for

where U( X)E- cos0+A 2cos(40/2), and E is a
<0, X2>0 constant of integration. From eq. (11) one gets

X2< 41X 11

- 0o- fd-/(2(E-X cos.P

0- 2cos(0/2))) ' '  (12)

b -2cos- (X2/41 )X, 11) , , "which gives J as a function of ,, i.e. eq. (12)

actually determines the inverse function. It is in-
teresting to note that eq. (12) is exactly solvable in

(0=0 Iterms of elliptic functions, just as the ordinar,
0= 2cs'(X,/4lX l) SGE. Furthermore, for specific values of E and €,.

Fig7 A 28-kink, 8-2 cos-A 2/4 1 ; A1<0, N2 >: it is possible to invert (12) in terms of elementarN,
S,functions. To see this it is suitable to effect the

X <0 X2>0

P 2oIX2

= 41t- 2 cos-h(X.4l 1 l)

F:ig 9 A 41r-2S kink for thc same parameter values as in fig 6
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I ia A mechanical analog ror the triple sine-Gordon equation [N - 3 in eq. (1)1 (ror graphical convenience &ears have bcen drawn

change of variable = 2 tan-'t in eq. (12). The the choice E=(X22-4X 1 IX', IXJ1
2 )/41X1 l and

ntcgral in (12) then becomes 0,= ±2cos t (AX/4IX1I) in eqs. 12-13 leads to
the function

4fdl/,(x4+of,2+ y), (13)
.0 = 4tan-t (V'(4IA 1 - P~k2I)/(41IAI + IX2I

wXith a = 2(E- XI + X2), ~=-2(E + XI), -y X tanh(±p(j - J)), (15)
_( E - A I - A 2), which is easily evaluated in terms

of elliptic integrals of the first type (see ref. 14). By while the choice E=_(X22-2I 1 IA,\ - IA\11 2)/41X11
chIoosing *p=O, *..=41r, *Oc=(A++O_)/2 and and Ot= ±2cos-(X2/4j~lI)±2ff gives
thle constant E (energy) equal to -X - A2 one
finds from eq. (12) that 0- 4tan'1(4jX11 + IX21)/(41AII - fA2f)

1 =4a 1fI+4~jXf2Xtanh(±PUe-i 0 )), (16)

X sinh (±(IX, I -+ ;k2/4)(1 - Jo)) + 2ff (14) with p = ((161X,1 2 _ jXA2 )/64XA1  . As it is
easily verified, eq. (15) represents a 28-kink corrc-

(%Ohere the assumption X2 > 0, IXII/X 2 > - were sponding on the mechanical line to fig. 7, while eq.
made). Eq. (14) represents a 41r-kink solution of (16) is the 41r-28 kink of fig. 8. Thus for parameter
eq. (2) for parameter values A,, A2 such that A2 > values characterizing regions A, B, C, of fig. 4 an

I,\, Al/A2 > - I which correspond the mechani- analytical solution of the DSGE is given by (14).
cal analog solutions shown in figs. 5-6. Similarly while in region D two analytical solutions exist
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The Melnikov function for prediction of Smale horseshoe chaos is applied to the rf-driven Joseph-
son junction. Linear and quadratic damping resistors are considered. In the latter case the analytic
solution including damping and dc bias is used to obtain an improved threshold curve for the onset
of chaos. The prediction is compared to new computational solutions. The Melnikov technique pro-
vides a good, but slightly low, estimate of the chaos threshold.

1. INTRODUCTION ing for two reasons: (i) For high temperatures quadratic
damping provides better agreement with experimentally

For some years the topic of chaos in the rf-current- measured I-V curves than linear damping. (ii) A full
biased Josephson junctions has attracted much interest, analytical solution to the equation with quadratic damp-
The first papers in that field were probably the qualitative ing is known. Consequently, the Melnikov technique for
work by Belykh et al. 1 and the numerical work by Huber- the case with an applied rf signal is more accurate than
man et al. 2 Since then a number of authors have made the corresponding case with linear damping. Finally, Sec.
numerical calculations,3- 6 electronic simulations, 7- 1

2 and III contains our summary and conclusion.
to a limited extent experiments on real junctions. 3

- 16

One of the things that characterizes almost all this work II. THE If.DRIVEN JOSEPHSON JUNCTION
is the lack of analytical methods to predict the onset of
chaos. This situation was recently changed by the analyti- In the following we shall consider systems of ordinary
cal works of Genchev et al. 7 and Salam and Sastry,18 differential equations of the form
who used the method of Melnikov integrals 1- 2

1 to dX
predict regions in the parameter plane where chaos "t =(ho(X)+eht(X,t,),I)
occurs. Their work is in some sense an extension of the
early work in Ref. I on the shunted-junction model, and where X=( ,y), ho=(fo,go), and h=(fl,g).
in the same spirit equations are derived for various re- The analytical expression for the Melnikov function for
gions of the same qualitative behavior. Together with the systems of type (1) is21

work of Kautz and Monaco3 it is the first step towards an i" + t

analytical prediction of chaos in the if-driven Josephson M(to) - ho(Xh(t -to))AhI(Xh(t -to),)

junction. I f - ,
In this paper we review the results of Salam and Sastry Xexp - Jo

from the point of view of Josephson-junction applications. (2)
For a detailed mathematical treatment we refer to the
original mathematical literature.'a - 21 Further, we extend where Xh denotes the homoclinic orbit. Here the wedge
the method of Melnikov functions to predict chaos in a product is defined by XAY=XIY 2-X 2Y, and D,
Josephson junction with quadratic damping. This latter denotes the partial derivative with respect to X. It is im-
modcl-unlike the model with a linear resistor-has the portant to notice that in order to apply formula (2) it is
advantage that analytical solutions are known in the ab- necessary to know the so-called homoclinic orbits2' for
sence of an applied rf signal, and the method of Melnikov the unperturbed system (c=O).
functions requires fewer assumptions. For both models- The Melnikov function is proportional to dUo), which
the analytical predictions are compared with numerical is the separation between the unstable orbit Xu(ro,to) and
simulations. the stable one X'(tot 0 ) (see Fig. 1). If M(to) has a simple

The paper is organized in the following way: Section zero and is independent of e as in (2), then the local stable
II A discusses the application of the Melnikov method to and unstable manifolds intersect transversally. The pres-
a Josephson junction with a linear damping resistor. Sec- ence of such intersecting orbits implies that the Poincare
t1on I B discusses the case of a Josephson junction with a map has the so-called Smale-horseshoe chaos.2' A Smale
quadratic quasiparticle I- V curve. This model is interest- horseshoe contains a countable set of unstable periodic or-

33 4686 @1986 The American Physical Society
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The heteroclinic orbits for the system [Eq. (4)] are given
E 

by

\ ~h(t -to)=+2tan-[sinhlt-toll

yh (t -to)= +2 sech(t -to) •.(5)

The Melnikov integral, Eq. (2), for the system (3) is
M (to) f yh_ (t- to)(p+pl si!l)-ah o d

Homoclinic orbit (dashed curve) and its perturbed --=P :Y(ldt + f )yh(t cos-nt)dt"

curve (solid curve). Distance between trajectories, d(to), is f+ '(t)dt
shown. X sin(lto)-a f ytdt.

(6)

bits, an uncountable set of bounded nonperiodic orbits, Performing the integrals of Eq. (6) with the heteroclinic
and a dense orbit. It should be noticed that even though orbits, Eq. (5), the following result is obtained:
the Smale horseshoe is extremely complicated and con- M(to)= ±27rp-8a±2rpsech(irf1/2)sin(flto). (7)
tains an uncountable infinity of nonperiodic or chaotic or-
bits, it is not an attractor. However, it can exert a Rearranging Eq. (7), we find a necessary condition for
dramatic influence on the behavior of orbits which pass the intersection of the stable and unstable orbits to be" '-"
close to it. These orbits will display an extremely sensitive
dependence upon initial conditions, and exhibit a chaotic [±p+4a/ir cosh(rfl/2)p, . (8)
transient before settling down to stable orbits of all
periods which may constitute a strange attractor. There- According to the previous discussion, Eq. (8) is a neces-

fore the existence of the Smale horseshoe can be seen sary condition for the existence of a Smale horseshoe.

the first step towards a possible chaotic behavior. Thus [The sufficient condition requires the existence of simple

Melnikov's theory is expected to provide the lower boun- zeros of M (to).] The formula deviates z2 from results in
dary of the chaos threshold. Ref. 18 by the factor 2/f1. The condition is given in

dIn t oterms of the four parameters of the problem: p, a, fi, and
In the following we shall consider two different cases. p Numerically chaos has been investigated "4 in the fl-
i) Linear damping, which is the most commonly as- ptComparing in

sumed case but for which an analytical solution to the un- vru- plne for fEd (8)] and the omaing in
perturbed case (i.e., no applied rf signal) does not exist. Fa=0.2, we rind that Eq. (8) predictstoo low a threshold
Thus the conditions for the use of Melnikov's method are for chaos. Kautz and Monaco3 speculate that intersec-
only approximately satisfied. tions between stable and unstable manifolds exist every-

(ii) Quadratic damping, which in particular for high where above the line given by Eq. (8), but that the result-
temperatures is a closer approximation to the I-V curves ing chaotic orbit is unstable with respect to the zero-
in certain cases. This model has the important advantage voltage state and thus not observed. Twh discrepancy may
that a full analytical solution in the absence of an applied be illustrated by considering the case of small fl. For
rf signal is known. n <ar the impedance of the capacitor is very large and the

A. The Josephson junction with linear damping circuit may be considered almost as if it were at dc. For
p=0 the system is then well behaved at least up to P I= I

The equation for a current-driven Josephson junction (shown as the dashed line in Fig. 2). The trajectory in the
may be written i-7

(3) p,

y = -sin6 +etp-cy + sin(flt)]

Here the overdot indicates derivative with respect to
time, a is the constant damping parameter, p is the nor- 2
malized dc bias current, p, is the normalized microwave
current amplitude, and fl is the applied frequency nor- I
malized to the Josephson plasma frequency. e is a pertur- £A A A

bative parameter that may eventually be set equal to 1, A

since in this case Melnikov's integral is e independent. 0. 2-
The unperturbed system (e=O) is 0.0 0.0 1.5

FIG. 2 Linear damping: threshold for chaos in parameter
(4) plane for p=0, a=0.2. Solid curve: Eq. (8). Triangles: numer-

y =-sind . ical results from Ref. 4.
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phase plane is an ellipse centered at the equilibrium point B. The Josephson junction with quadratic damping
(0,0). The voltage am litude is approximately proportion-
al to p~fl/(1 +a 2f12) 1'2, which tends to zero as fl-.0. If in the system (3) it is assumed that the resistance

For fl=a, the impedance of the capacitor is the same as varies with the voltage such that R=const/ V
that of the resistor, and the capacitor can no longer be =(fiy/2e)/V, one obtains,2 3 with the same normalization
neglected. as in the system (3),

For* 0 very few systematic investigations exist, be- k k()2+sinO =p+plsin(ft), (10)
cause the parameter space is four dimensional; however,
Refs. 3, 5, and 6 contain numerical results, which can be where k =(YC) - . Unlike the case with linear damping
compared with results obtained here. The structure of Eq. the exact analytical solution to Eq. (10) with p, =0 has
(8) is interesting and may be qualitatively understood been obtained. 23 Introducing y =4, one gets
from the following simple arguments. The lowest thresh- Y
old of the applied rf current depends on the separation of Z +2ky2=2p-2 sin, ( 1)
the dc bias current from the quantity Pc =4a/. From dof

other investigations' it is known that Pc is the lowest bias with the complete solution (assuming p > 0)
current where rotating pendulum solutions exist; for this
particular value of the bias current the trajectories for ro- Y +4/(1+4k

tating and oscillating solutions of the pendulum equation +C1 exp(-2kO), (12)
get close to each other in the phase plane. Thus, for bias
currents close to p, a very small perturbation may shift where tanB=2k and C, is an integration constant to be
the system from one orbit to the other, i.e., the threshold adjusted by the initial condition. Looking for the steady-
for the applied rf current is lowest. state solution at finite voltages the transient term vanishes

We may summarize the findings for the case of the and Eq. (12) becomes
linear resistor by saying that numerically p should be 2= 2 [p+poCos(+fl)] (13)
within a band of magnitude Ap given by YYOP(o

where po=2k/( I +4k 2)1/ 2 and yo=k -1/ 2 . If the voltage
Ap=p sech~rffl/2) (9) goes negative, the damping, term in Eq. (10), k 2,

centered at Pc in order to obtain horseshoe chaos. Figure should be replaced by k 1 41 4,. However, the solution
3 shows this band in the a-versus-p plane. Pc =4a/r to the resulting equation for 4 <0 is obtained by a simple
separates regions of qualitatively different behavior in the symmetry argument. We may note there that the parame-
parameter plane of the unperturbed system. For p <Pc ter Po has the same physical meaning as the parameter Pc
only oscillating solutions exist. For Pc <P < 1 oscillating defined for the linear resistor. Inserting y =4, and rear-
and rotating solutions exist, and for p> I only rotating ranging, we may express the solutions to Eq. (13) in terms
solutions exist. For large a, Pc is known to deviate from of elliptic functions.2 4 For p >po we get
PC =4a/ir as shown in the figure. How the chaotic band dA(
develops for large a is outside the scope of the present pa- (0, +3)/2 = am(u), yd1
per. Here we only notice that the chaotic band follows
the linear portion of the Pc curve for low a. Here am is the amplitude function and dn is the Jacobi-

an elliptic function of argument u =(yo/2)(p+po)'1/(t
-t o ) and modulus m =2/( +p/po). The trajectory of
the solution, Eq. (14), is shown in Fig. 4 for p=po, and for
p slightly larger than Po. To proceed we write Eq. (10) as

a the two-dimensional vector field,

10 (15)

j;= --sin -k 2+p+Er sin(fnt) .

05 2' 2

0 0

00 05 p 10 15 20 25 30

FIG. 3. Bifurcation diagram. Dashed curve: p,=4a/ir. FIG. 4. Phase plane trajectories of Eq. (14) with k=O l
Solid curve: p, from numerical simulation. Crosshatched area: Upper curve: p=0.2 . Lower curve: heteroclinic orbit for
region of chaos. p=po= 0 .19 6.
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In the following we shall use the analytic solution, Eq. p,
14). to obtain the transverse intersections of the stable 4, (a) (b)

and unstable manifolds by finding the zeros of the Melni-
kov function. In order to do that it was noted in Sec. II
that it is necessary to have a heteroclinic orbit for the un-
perturbed system (L=0) connecting hyperbolic saddle :)
points. So we must investigate the fixed points of Eq. (13)
when P=Po. The fixed points are situated on the 0 axis of I
the phase plane (O,y). It is known"9 -2' that the vector
field (4,#) should vanish at these points. This is found to 00 . 2
be the case (i.e., $ and j are simultaneously zero) in Eq.
'14) for P=Po. Further, we shall show that the equilibri- FIG. 5. Quadratic damping: Threshold for chaos in parame-
tim points of the vector field (yj) [Eq. (15) with e=0] ter plane [Eq. (24)]. (a) p=0, k=0.2; (b) p=O, k=0.1; and (c)
are of the center type at p=O.l, k=0.1. Chaos above curves.

4bj)=(-sin-(p)+2nir, 0), n=0,+,±2....

(16) F, sech(bt/2)sin(fltr

and of the saddle type at Xexp[4k tan-[sinh(bt/2)j Idt

(d,)=( -sin-(p)+(2n + 1)1r, 0), and

n =0,±1,±2..... (17) F2= f__ sech(bt/2)cos(flt)

We restrict the discussion to the equilibrium points in Xexpj4k tan-'[sinh(bt/2)] dt.
the interval

It is easy to see that the integrals, F, and F 2, are finite
-- B<4t<IT -43. (18) and not zero. It is also possible to see that transversal

This means that we consider values of p such that p< 1. zeros for the Melnikov function, Eq. (23), exist. A neces-
For p=Po we find from Eq. (14) that m= 1, and the limit- sary condition is
ing values of the elliptic functions are given by 24  p, > (p-p)sinh(21rk)/kbiF' +F')'I4 . (24)

dn(u,l)=sech(u) and am(u,l)=gd(u) , (19) The prediction for the onset of horseshoe chaos, Eq.

where gd(u) denotes the Gudermannian function. In or- (24), is plotted in Fig. 5 as a function of fi for different
der to get more information on the behavior of the system values of parameters p and k. Note that the structure of
.ihnmt the point p=po, and in order to use the simple func- Eq. (24) is similar to that of Eq. (8). In Eq. (24), Po has
tlons in Eq. (19), we rewrite Eq. (15) by adding a perturba- the same significance as p,=4a/,r in Eq. (8), and the
tion term Ap=p-po=E(r -r 0 ) to obtain threshold rf current depends on the separation between p

and Po.
b=y , Alternatively, one might derive a condition for inter-

(20) secting perturbed heteroclinic orbits by considering also
y=-sin-k() 2 +po+4r 1 sin(fMt)+(r -ro)], the loss and bias terms as perturbations and use the

heteroclinic orbit in Eq. (5) for insertion into the Melni-For b = I, Eqs. (15) and (20) are identical. For =0 we kov function. The calculation proceeds in the same
obtain the following heteroclinic orbit by using Eq. (19): manner as for the linear resistor and the result is a thresh-

[6hMt),yt]= 14 tan-'[exp(bt/2)]

-fl--iT, b sech(bt/2)1 , (21)

where b =y 0( 2p0 ) / 2 . The Melnikov integral is then given P, (
by [Eq. (2)] 4'-/

M(t0) =f b sech[b (t -to)/2][p-po+pt sin(ft)] 3-

x exp [ f0  2kb sech(at'/2)dt' Jdt... 2 ?

(22) 1 ?

Evaluating Eq. (22), we find 00.0 1.0 f 20

.M (in)= (p-p 0 )sinh(21rk)/k FIG. 6. Quadratic damping: Threshold for chaos in parame-

+plb [F, cos(flto)+F 2 sin(flto)] , (23) ter plane for p=O. Solid curves: Eq. (25); dashed curves: Eq.
(24). (a) k=0.3; (b k=0.1. Numerical results for k=0.1: Tri-

where angles, chaotic solutions; circles, periodic solutions.
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Fig. 3. Here, however, the analytic expression for the P0
k curve is known [Eq. (13)]. For k--cc it approaches unity

asymptotically. The band corresponding to chaos is given
10 by

Ap =p1bk(F +F' ) '1 2/sinh(2rk), 
(26)

which is shown crosshatched in Fig. 7.

0.5 I1. SUMMARY AND CONCLUSION

Chaos in the rf-driven Josephson junction was investi-
gated analytically by means of the Melnikov-function
technique. With a linear damping resistor only an ap-
proximate solution for the unperturbed phase plane trajec-

0 tory could be used in the Melnikov integral. For the case
0.0 0.5 p 1.0 of a quadratic damping term the analytic solution to the

FIG. 7. Bifurcation diagram. Solid curve: unperturbed case has been used, and an improved thresh-

po=2k I +4k 2)'1 2 as defined in Eq. (13). Crosshatched area: old curve for the onset of chaos has been obtained. For

region of chaos. both cases, however, the Melnikov prediction gives a
threshold somewhat lower than that found by direct com-
putation. That is because the Smale horseshoe, whose ex-

old condition given by istence in the Poincar map is predicted by Melnikov's
theory, is not an attractor;, indeed the set of points asymp-

pt>- I _p+2k I cosh(trfl/2), (25) totic to it will have zero measure. Thus the existence of
Smale horseshoe does not imply that typical trajectories

which is identical with Eq. (8), except that 2k replaces will be asymptotically chaotic. In fact, in some cases we
4ar r. For small values of the loss one should expect Eqs. have transient chaos followed by asymptotically periodic
(24) and (25) to give identical results. In fact, the expan- motions. However, it may happen that some of the orbits
sion of Eq. (24) to first order in the damping constant k is constitute a strange attractor. Therefore the "presence" of
identical with Eq. (25). Equation (24) may be considered the Smale horseshoe is the starting point over which a sys-
a more precise condition since it is derived from the tem can undertake some of the possible routes to chaos.
heteroclinic orbit to the unperturbed solution when both Apparently the method seems to fail for low applied fre-
loss and bias are taken into account. Figure 6 shows a quencies. Although the Melnikov technique seems to give
comparison between Eqs. (24) and (25) for k=0.3. A a good estimate of the chaos threshold, further work is
comparison between Eqs. (24) and (25) for k=O.l and needed to obtain a detailed analytical criterion.
some corresponding numerical simulations are also
shown. We note that the Melnikov function gives too low ACKNOWLEDGMENTS
a boundary for the onset of chaos as in Fig. 2. An equa-
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The linewidth of the radiation from tihe Josephson ring oscillator under the influence of an external field is predicted by a
new perturbation analysis which is an improvement of an earlier kink model. The linewidth is due to background oscillations
rather than kink velocity fluctuations.

The Joscphson-junction fluxon oscillator pro- and the standard deviation in the frequency of
duces microwave radiation of very narrow line- electromagnetic radiation from the oscillator de-
width. Recently, this property which is important fined as >> (((f - (f,))2))I/2 where f, is the
for potential applicatiots has been demonstrated inverse of the nth fluxon revolution time, T,. and
experimentally [11 and by computational solution brackets, (), denote the average over the revolu-
of the perturbed sine-Gordon equation using a tions, was computed in the single fluxon case
pseudo Fourier spectral algorithm implemented (solid curve in fig. 1). Furthermore a kink model
on a CRAY-I-S vector proce:,sor (2]. in ref. 12] based on the separation of the phase.

In the latter reference a discrepancy between O(x, t), into a localized kink part and a back-
the computational results and the predictions of ground part, O(x, t) = ,k(x, t) + 0 (t), and using
the kink model was found. In the present note momentum of the kink lead to the results shown
an improved perturbation analysis is presented. as the dashed-dotted curve in fig. 1. The difference

The circular Josephson tunnel junction of over- in scale between these computed and kink-model
lap geometry is modelled by the normalized per- results motivated the present investigation.
turbed sine-Gordon equation (3] Asin ref. [2] we let ok (x, t)= 2iri1(x- x (t))

where H is the unit step function and x'(t) is the
- - sin 4 = a0, + r + no sin 2?t, (1) position of the kink at time t we get the differen-

with periodic boundary conditions tial equation for the background, qb(t),

,,(O. t)=p,(I, 1), 0,(O, t)= (I, t), (2) - -sin 0"'= ae +y+ -0 sin 2t. (3)

where the a term represents quasi-particle loss In ref. [2] the revclution time of the fluxon was
across the barrier, the y term is the dc-bias cur- defined by (O(x, i + T,,) - O(x, t)) = 2'rr where
rent. and sinosoidal driving term models micro- brackets now denote a spatial average over the
wave irradiation (with amplitude 10 and frequency junction. Introducing the separation, A(x, t) =

V) of the junction. The circumference of the cir- mp'(x, i) + e(t), and ,A(x, 1) - 2'ni(x- x(t))
cular transmission line, normalized to the Joseph- into this definition, we obtain instead
on length, is denoted 1. 2 +T

In ref. (21 eqs. (1), (2) were solved numerically T.U- (i) di+ 4m + T) - 0(t) = 2n,

" B.ed on a master's thcsis by one of the authors (M.F.). (4)

0375-9601/86/S03.50 0 Elsevier Science Publishers B.V. 71
¢North-Holland Physics Publishing Division)
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Standard deviation - Of in ref. [2]. However, the maximum is shifted in
frequency and hysteresis is missing. By solving the
full nonlinear equation (3) numerically we obtain
the dashed curve in fig. 1. As expected the reo-

10-2 r nance.frequency is now closer to the value found
. in the computer experiment and a similar hyster-
".- esis phenomenon is observed. The perturbation

-.. theory predicts minima at 12 = 0.65 and 2 = 0.35
in fig. 1. At these frequencies the background

• "frequency is a multiple of the revolution frequency

.o. of the kink. Computational data have not been
. i \ :.'"obtained at these frequencies.

We conclude that the background oscillation
""- ':provides the main contribution to the linewidth of

10"5  the microwave radiation from the oscillator.
0.5 1.0 1.5 Quantitative agreement between the prediction of

Driving frequency - non-linear perturbation theory and the computa-

Ftg 1 Standard deviation of electromagnetic radiation versus tional results for the standard deviation (includit,;

dri, ing frequency 2. Parameters a- 0.01, y -0.02, "% -0.01. the hysteresis) is found. However, the maximum
and I = 8. Solid curve: Computational solution of eqs. (1). (2) standard deviation in the present perturbation

21 l)a, hed-dotted curve: Kink model result from 121. Dotted theory occurs at a slightly higher frequency than
curve. New perturhative result using linearized version-of eq. in the numerical computation.
3) Dahed curve: New perturbative result using the full eq.

(I Dotted and da.shed curves overlap away from resonance
rcgion. The financial support of the Danish Council of

Scientific and Industrial Research and of the
European Research Office of the United States

,here the kink velocity u4 = dx4/dt. In the kink Army (through contract No. DAJA-45-85-C-0042)
model used in ref. [21 the background terms in (4), is acknowledged.

( + T,) - ( were neglected. However,
miutmerical determination of the periodic solution
of eq. (3) shows that the background part in (4) References
\iclds the dorninant contribution to the fluctua-
non of the fluxon revolution frequency f,. The ll E. Jocrgensen. V.P. Koshelets, R. Monaco. J. Mvgmnd.

IluCtuations of U' (t) around the power balance M.R. Samuelsen and M. Salerno. Phys. Rev. Lett. 49 (1942)

\clocity [41, 0jh = [I + (4a/yiTr) 2 1- 1/ 2 , turn out to 1093.
he negligible. Linearizing eq. (3) around the ground 121 F. If, P.L. Christiansen, R.D. Parmentier. 0. Skovgaard.
t, tt..,sin -y. we obtain the dotted curve in fig. 1 and M.P. Soerensen, Phys. Rev B 32 (1985) 1512.ehbtsing - h y.webtainhedotte d qucntiti ve int fi. 1 31 A.C. Scott. F.Y.F. Chu and S. Reible. J. Appl. Phys. 47
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Switching between dynamic states in intermediate-length Josephson junctions
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J. Mygind, N. F. Pedersen, and M. R. Samuelsen
Physics Laboratory 1. The Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 15 July 1985)

The appearance of zero-field steps (ZFS's) in the current-voltage characteristics of intermediate-
length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation
(PSGE) is associated with the growth of parametrically excited instabilities of the McCumber back-
ground curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the
asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill's equation
which predicts how the number, locations, and widths of the instability regions depend on the junc-
tion parameters. A numerical integration of the PSGE in terms of truncated series of time-
dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB
evolve into the fluxon oscillations characteristic of the ZFS's. An approximate analysis of the
Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill's
equation which predicts that the major effect of such a field is to reduce the widths of the instability
regions. Experimental measurements on Nb-NbO,-Pb junctions of intermediate length, performed
at different operating temperatures in order to vary the junction parameters and for various magnet-
ic field values, verify the physical existence of switching from the MCB to the ZFS's. Good qualita-
tive, and in many cases quantitative, agreement between analytic, numerical, and experimental re-
suits is obtained.

I. INTRODUCTION from the McCumber curve.
In the numerical work we use a method based on a sim-

The appearance of zero-field steps (ZFS's) in the ple extension of the multimode theory developed by En-
current-voltage (I- V) characteristics of long Josephson puku et al.2 which amounts to a consistent expansioin of
junctions results from fluxons propagating along the junc- solutions or the perturbed sine-Gordon equation in trun-
tion. This observation was first noted in a pioneering pa- cated series of time-dependent Fourier spatial corn-
per by Fulton and Dynes' in 1973. In the same paper ponents. The time evolution of the Fourier coefficients is
Fulton and Dynes reported on experiments with a determined by direct numerical integration. The zero-
mechanical analog of a long, lightly damped junction con- order Fourier coefficient corresponds to a near-uniform
sisting of a chain of elastically coupled plane pendula. In rotation which acts as a parametric driving force in the
the regime of high mean voltage (angular velocity) they system. In the instability interval corresponding to the
found a near-uniform rotation of the pendula, but with position of the nth zero-field step the zero-order Fourier
decreasing voltage they observed that this uniform mode coefficient excites predominantly the nth Fourier mode
of operation becomes unstable against spatial fluctuations, and gives rise to a spatial variation in the phase along the
resulting in the creation of propagating fluxons or, alter- junction which evolves into the corresponding fluxon os-
natively, a switch to the zero-voltage state. In physical cillation.
tcrrns the near-uniform rotation corresponds to a junction The effect of magnetic field is handled in an approxi-
which is biased on the McCumber curve. mate way by means of a simplification of the multimode

In the present paper we report on analytic, numerical, equations. After some manipulation, the problem is again
and experimental results which elucidate in more detail reduced to a Hill's equation which now contains the mag-
the instability of the McCumber curve. The analytic netic field as a parameter.
work is based on a stability analysis of the perturbed The experimental samples studied are niobium-oxide-
sitne-Gordon equation which describes the dynamics of the lead junctions of overlap geometry. Experimental param-
Jnscphson junction. In the case of zero magnetic field this eter values are adjusted by varying the sample temperature
equation is linearized around a solution which corre- in a controlled way.
sponds to a uniform rotation of the pendula in the Comparison of the analytic, numerical, and experimen-
mechanical analog. The result is a Hill's equation. The tal results yields an agreement that is at least qualitative
intability regions of this equation determine the instabili- and in many cases also quantitative. We have also ob-
(v intervals along the McCumber curve, the number of served some experimental phenomena, however, that are
which gives the number of ZFS's that can be reached not contained in the model results.

33 174 ®1986 The American Physical Society
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II. MATHEMATICAL MODEL McCumber solution. As will be seen in Sec. VI, such
AND STABILITY ANALYSIS solutions evolve into the fluxon oscillations characteristic

of ZFS's.
The mathematical model of the overlap Josephson junc- In the limit of small k, we may approximate Eq. (2) as5

tion is, in normalized form, the perturbed sine-Gordon
qualton3  4o(t)= Wt + _-2 sin(ot) , (7)

0 . - 0 , - sin O = aO , -- -r ,(la ) w t
with

S0,t = 0, (1, t) =¢ . (1b)

Here, O(x,t) is the usual Josephson phase variable, x is kK( "  (8)
distance along the junction, normalized to the Josephson
penetration length X./, and t is time, normalized to the in- This approximation is valid for the asymptotic linear por-
verse of the Josephson plasma angular frequency wo. The tion of the McCun ber curve ie, i for an >3. The insertion
model contains five parameters: a, ,, , and ??. The of Eq. (7) into Eq. (6a) yields, after a simple calculation,
term in a renresents shunt loss due to quasiparticles cross- +(..2i
ing the junction, the term in 0 represents dissipation due j+(a+/b)+ b--i(a-)
to the surface resistance of the superconducting films, y is
the uniform bias current normalized to the maximum + acos(mOit) yre0, (9)
zero-voltage Josephson current, 71 represents the normal- N
ized external magnetic field, and'the normalized length of where
the junction is denoted by I.

We first consider the case of homogeneous boundary 2m J,,(w-'), m odd
conditions, i.e., -q=0 in Eq. (Ib). 4f a=/o='=0 the a,,,--12 * ( o . ), m even (10)
McCumber solution of Eqs. (1) is exactly 4

and 1.4 is the Bessel function of first kind and mth order,
iI=$o(t)=2am~t/k;k], (2) and J4 denotes its derivative with respect to the argu-

where am is the Jacobian elliptic amplitude function' of ment.
modulus k. For nonzero r /,, and y, we assume that Eq. Using the fact that the argument of all the Bessel func-
'2) solves Eqs. (I) in the power-balance approximation. 4  tions in Eq. (9) is l/a and that by assumption w >3. we
This yields the following expressions for the McCumber may approximate the Bessel functions as
branch of the I- V characteristic of thejunction: J. W )+

4aE(k) (3a) 2"mro 4X2"[(m +l)1]
irk Using this approximation, Eq. (9) may be rewritten as

I',) T r 3bkb)K(k) j +2 E4+ 8+ e-d. cos(m 1r) y =0, (12)

whcre K(k) and E(k) are, respectively, the complete el- I .- I
liptic integrals of first and second kinds. 5  where r=wt, 6_ 1/0 2, 4 =(w /2)(a+,6b 2),

Following Burkov and Lifsic,6 we now express solutions
of Eqs. (I) in the vicinity of the McCumber solution as 6= 10 W 2 16

b(.x,t) = o(t) +r (x,t) ,(4) 8f-~Ibz 1

and overdots now denote derivatives with respect to r.where d~ is given by Eq. (2) together with the conditions Tefrtfwepnincefcet r
of Eqs. (3). and i is a small perturbation of the form

ai-4  I o-' I ar--$x~t) =y (t)exp(ibx) ( di =l- a- 4 , d2 = I- -- , d3 " - 4 (~13)
8 2 12 8 128

with b constant. Inserting Eqs. (5) and (4) into Eqs. (1), etc.
we obtain an ordinary differential equation for y(t): Following Nayfeh and Mook' we calculate the stability

+(a +b 2) + b2+cos(00(t)]Jy =0 , (6a) boundaries of Eq. (12) by means of a Lindstedt-Poincare
perturbation expansion in the parameter e. Retaining

wlcrc terms up to second order, this calculation yields

1)=n-,/1, n = ,l,2,. . (6b) b2= 28,
;tril ovcrdots dcnotc dcrivatives with respect to f. "2  1- 82

Equation (6a) is a damped Hill's equation; it may have I I:
,instable solutions in certain regions of its parameter +- I-- - o(a+-b )- - 1-
-pacc In such regions a small initial disturbance will lead 2 8w' J 88wA,
io .1 large rcsponsc in the solution, giving rise to the onset
of a solution with spatial structure, in contrast to the _t I
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with b given by Eq. (6b). For given values of a, ,, 1, and gonality properties of the cosine function together with
n, Eq. (14) gives two values for a, say w.+ and a-, which the fact that 0' is even,
are the stability boundaries of Eq. (12), provided that the I N
argument of the square root in Eq. (14) is positive. If this o+a"o 1 sin 17x + 8,Cos
argument is negative, no instability region exists for the 1 4  no j - O,
given parameter values. Using Eqs. (3) the voltage- H 7a)
stability boundaries wi. and a can be translated into the
corresponding current values, say y+ and y- . +(a+Ow' )6. + w.

111. MULTIMODE THEORY2

The linear-stability analysis presented in the preceding -'7f ,osinx+jjcos[
section provides estimates of the stability boundaries of mr
the McCumber curve, but it cannot furnish the time evo- Xcos I Jdx, m - 1,2 ...... V
lution of an unstable solution. In order to follow the evo- I
lution of such an unstable solution, we consider a simple (17b)
extension of the multimodc theory developed by Enpuku
et al.2 The basic idea is to approximate solutions of Eqs. with
(1) in terms of a finite number of Fourier spatial modes W. =mV/1 (l1k)
whose amplitudes are unknown functions of time. This
can be done with a reasonably small number of modes if This system was integrated numerically using the stan-
two conditions are satisfied: (i) the spatial extent of a sin- dard predictor-corrector routine DGEAR; 9 the spatial in-
gle fluxon is a sizable fraction of the length of the junc- tegrals were evaluated by means of the fast-Fourier-
tion, and (ii) $ in Eqs. (1) can be expressed in terms of transform routine FFrSC (Ref. 9) using N function sam-
periodic, continuous, and smooth functions of x. Condi- pies over the interval (0,1] (corresponding to 2N samples
tion (i) will be satisfied if we limit attention to over one spatial period of 0'). The accuracy of the tern-
int ernediate-length junctions, i.e., those having 1<1<5. poral integration was checked by varying the local error
Condition (ii) can easily be satisfied in the following way: limit in DGrEAR, and the influence of mode truncation by
We first define a new funct;on 0' in the double x interval varying N.
[- 1,11 as

0/(x,t), O-x <-1 IV. APPROXIMATE ANALYSIS
o'(x,t)- 1$( xt) -l<x_0. (15) OF MAGNETIC FIELD EFFECTS

The multimode theory presented in the preceding sec.
By construction 6' is an even, continuous, periodic func- tion is valid for any value of the magnetic field 7. Here
tion of period 21; however, from Eq. (lb), its spatial we present an approximate treatment of this theory, valid
derivative is discontinuous at x=0 and x -±1 for q7 O. for sufficiently small 7, which reduces the problem of
Thercfore, we split 0' into two parts, the first of which is determining the effects of magnetic field to a simple ana-
an explicit function that satisfies Eq. (lb) and the second lytic result similar to that presented in Sec. II. The ap-
of which is now a smooth, even function, which, accord- proximation is based on assuming that the amplitudes of
ingly, may be reasonably approximated by a finite sum of the spatial modes in Eqs. (17) are small, i.e.,
lowv-order Fourier modes: 'y

N , _ I J( 1) <<I.
6'(x.t)= 77 1x I + I Olt)cosj , (16) J-1

f-0 Using this approximation we can calculate explicitly the
Inscriing Eq. (16) into Eqs. (1), we get, using the ortho- integrals in Eqs. (17), obtaining

S+ ai0 - y-- C0.0- b1.091 sinOo-  CJ... 1 cos9o , (19a)

0,-Izo,.3d + O =- o. -.. ~bjmOj si f-- bo.- .c ,,,, Lo, l9b,
I -I

with m =1,2,3, ., N. Here,
11+ f 1fv + 1 jmn 71 ] -ifaJ

b.I., =+I( ')#cos(77)I 171r.+T + I + I~a
b"=[t(-ll"cs i)] + l.irj + rm irl + rj -rrn 77/--1rj + rrrn 771 -irj-rrn '

I =[ l+'msin(i7l)] r1l +ifj+rrm + l + + 1ll-rj-fm J2,
71 + ij -?n 171 -rj+ml
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j.m are never larger in magnitude than 1, we may further ap-
0.0 proximate Eq. (19a) as
1.0lo -...... #o+ajo--=-coosin~o-booCOS~o, (21)1.2

zo which can be cast into the form
0.. '+a''--y'+sin'=0, (22a)

with
00 ~..--*-.

ca = 2 +b2,o11 sin(7l7/2) (22b)" I ' 71/2 '

0. . 8-arctan(boo/eo,o)= 1l/2 , (22c)
e o t'=at/2t, (22d)

0.0 a'=a -/a, (22e

2.2 y'-aty (22)S1.0 ...... a 22
1.0.1zo . ='(t)=o(t)+8 , (22g)

05 ." .. ... where overdots now denote derivatives with respect to t'.
--- "\ -.- Equation (22a) has the same form as Eqs. (1) in the ab-

..... , sence of spatial structure and in the absence of magnetic
00 . -- .---.. field, i.e., it describes a McCumber solution and conse-

quently leads to

b) 00=2am[ta '/k;k]-8 , (23a).35

0 2 6' 0 Y _ 4 a a 1 2Wr k )

FIG. 1. Coefficients (a) 61, and (b) c.,,, of Eqs. (20). Note rk
that bj.,, = b,. and c, = c, f,1  (.jo t . -- (23c)

SkK(k)

In Fig. 1 we show the values of bh,,. and cj,,, for If we now assume that the solution of Eqs. (19) con-
.m = O, 1.2 and 0_-< 7,/-< 10. tains only one dominant spatial mode, say the mth (which

Uqing again the approximation (18), together with the is reasonable for a sufficiently short junction), Eqs. (19b)
ohscrvation from Fig. I that the coefficients bl,,. and Cj.,, reduce to a single equation,

2I

0",, + (a +- ,,0)O,,, +a, e,, -2(b,.,,sinOo-c,,,,cos0o 0),, = - 2 (co,,,sino+bo,,cos~o), (24)

which can be written as a Hill's equation with a forcing term

0,,, +(a 3 + [3o[,,, +2d cos(0 0+ ')]0,, = -2p sin(00 +,) (Z5a)

by dcfining

_Y = (c I,-= 2 + 2 2b
d(c.., + b,,.,) sin 2 7 2 + r17-21rm+ lj7 (:5b)

d- arctan(b,.,/,,,,,,,) -- c)
2(C )l/Zs +'2-P" /-rm rI+'

.1 +b.,)'/is K7 rn + --11 + 25d)

=arctan(h,,/cm)="U- + 2 p"
2 2

Ith =0,1 for rn even,odd.
For small values of 7 it is reasonable to assume that the instability regions of Eq. (25a) are the same as those of the as-

,c,,atcd homogcncous equation)10 Therefore, we restrict our attention to the homogeneous equation

+ 2 +2dcos 0I I 6
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We may perform now the same procedure as used in the i7=0 case. As in that case, Eq. (26) may be cast into the form
of Eq. ( 2), where now

t=, f =I/02, 1=(i,/2)(a+,6w2 ), 8=W ' o 2d[ - 1 (27a)

The first few expansion coefficients are now given by

d82d 1+2L'1, d2=2d1 2 8 d32d' (27b)

etc. Performing the same Lindstedt-Poincar6 perturbation expansion used before, we obtain the following instability
boundaries to second order in c:

C !1 d I I__1 9 _II-_L1 1 1 _ a2 142 )2t1/2
OM 2 01 8W4 -2Wa2 8aW4 I+dZ 8W 4  ( n(8

This expression assumes the form of Eq. (14) for 71=0. on the first ZFS. Typical frequency-tuning rates of
For ir¥0 but small it gives the dependence of the instabil- Av/AT, Av/Al,,, and Av/ABpi were 0.1 MHz/mK. 2
ity boundaries on the magnetic field. MHz/IiA, and 0.5 MHz/pLT, respectively.

The temperature of the helium bath was regulated with
a manostat to within - 1 inK. A temperature stabiliza-

V. EXPERIMENTAL PROCEDURE tion better than 10 pK at 2.1 < T<4.2 K could be main-
tained for minutes by adjusting the thermal time constant

Sample preparation and experimental technique have of the microstrip box by regulating the exchange-gas pres-
been described in previous publications." Several junc- sure in the vacuum can. All 50-j/m-diam wires were also
tions have been investigated, all Nb-NbxO,-Pb overlap thermally anchored to the vacuum can.
)osephson tunnel junctions of intermediate normalized The de-bias current was supplied either from a sweep-
length. The results reported here were obtained with a able constant-current generator or from a current source
representative sample (S6-7/4), a junction of length based on reference mercury cells. The current was fed to
L = 397 /im and width W=17.6 Aim. Geometrically, the the junction by a long, double 50-/im-diam wire, bifilarly
overlap of the junction was perfect to within 0.5 /im, the wound transmission line, the hot end of which was ther-
re-olution of our optical microscope. mostatted in order to minimize the influence of thermo-

The substrate was mounted in a I X 1-in.2 microstrip powers. The dc voltage across the junction was measured
box and thermally anchored to a copper block containing using a similar transmission line. Both transmission lines
two precision Ge thermometers and a small heating ele- were drawn inside thin-walled brass capillaries.
ment. All the 50-jim-diam wires leading to the Josephson Input noise of either capacitive or inductive origin to
junction, the thermometers, and the heating element were the junction did not produce any observable frequency
bifilarly wound and carefully thermally anchored to the modulation or linewidth broadening of the emitted radia-
copper block. tion. The noise of the dc amplifier used allowed us to

The microstrip box was included in a vacuum can im- resolve voltage-step structures less than 100 nV on a fast
mersed in a liquid-helium glass cryostat. A low-loss (in- (10-ms response) XYrecorder.
sidc gold-plated) rectangular stainless-steel waveguide The external magnetic field was produced by a coil
connected the room-temperature X-band field-effect- wound onto the vacuum can and was applied in the plane
transistor (FET) microwave receiver to a sma transition of the junction and perpendicular to its long side. The
inside the vacuum can. The final part of the microwave magnetic shielding of the cryostat and the wires leading to
system was a 20-cm-long, all-Nb, 0.085-in. sma cable the coil was sufficient to prevent magnetic noise from in-
leading to a sma-to-stripline transition in the microstrip terfering with the measurements. This could be checked
box. by reading the linewidth of the emitted radiation when

A weak coupling to the microwave system was provid- biased alternatively in regions of the ZFS with
ed by an inverted microstrip antenna placed at a fixed dis- Av/AE,,p t =0 or Av/ABappt0.
tince of about 10 pm from one end of the junction. The The critical-current density J, the Josephson penetra-
distance to the ground plane (nonsuperconducting) could tion length Al, and the loss term a were determined from
he adjusted in situ by means of a cryogenic differential the dc I-V characteristic (critical-current value, ZFS
%crcs. asymptotic voltage, and the slope of the McCumbcr curve

An extremely high stability of the three external bias at voltages corresponding to the ZFS studied) and from
paramcters-temperature T, current Ido' and applied direct measurement of the plasma-resonance frequency. 2

maignctic field B,r, 1-was essential and was verified by For the junction in question (sample S6-7/41, J=26,2
measuring the frequency (-10 GHz) and linewidth (-5 A/cm 2, X.=91 1m, 1=L/ X= 4 .4 , and a=0.006 at 4.2
kll,) of the radiation emitted by the junction when biased K.
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Figure 2 shows a portion of an I- V characteristic calcu- 0(a
lated numerically from Eqs. (17) using the parameter

McCumhbcr background curve (MCD) and the first zero- I
ficld step (ZFSI) are evident. The inset shows in more de- -
tail the region where ZrSI joins the McCumber curve. 2.8-
This region was calculated as follows: For 7=0, the nu-
merical growth of an instability requires the imposition of
;an inhonmugcneous initial condition. Accordingly, for a 2.4-
given y, a "pure" McCumber solution was launched and
allowcd to stabilize for 100 normalized time units, after
which a small perturbation was added. In the instability 500 600 700
region. i.e., for y_ -y-5r+ or ow .oa-<+, the perturba- Time t
lion grows, causing the system to switch to ZFSI. Out- - _ _ _ _ _ _

side of the instability region the perturbation decays, and (b)
the system relaxes back to the McCumber curve. For 1
q-;1O there is a coupling between the McCumber solution
and the spatial modes through the boundary conditions,
Eq. (1b); this allows the instability to develop also in the
absence of an external perturbation.

Figure 3 shows the dynamics of switching in more de-
tail. In this figure, obtained using the parameter values
a=0.05, /3=0.02, 1=2, 77=0, and y=0.16, a small per-
turhation has been added to the solution at a time prior to -
t= 500. Figure 3(a) shows the behavior of 00 in Eqs. (17).
Note from Eqs. (16) and (8) that (j 0 )=( q)=. For
t=- 500, we see that w m3.20. Between t=500 and 550, a 500 600 700
switching takes place, which, after a transient, settles into Time t
a state having cum 2.85. Figure 3(b) shows the correspond-
ing behavior of 01 (the larger-amplitude oscillation) and 02 13 (C)
thc smaller-amplitude oscillation) in Eqs. (17). From this 0
igure it is evident that the switching seen in Fig. 3(a) is

aciated predominantly with an exponential growth of
the first-order Fourier spatial component. In a similar
wi, Fig. 3(c) shows the behavior of 03. Comparing Figs. 0.00-
3hl aid 3(c). we see that the amplitudes of the Fourier
coefficients decrease rapidly with order number.

Using this numerical procedure, we find that the stabil-
ity boundaries associated with ZFSI for the parameter Ool-
values used are, expressed in terms of bias current,

500 600 700
Time0I6 . FIG. 3. Dynamics of switching from McCumber curve to

,...-'~ ZFSI calculated from Eqs. (17) by adding a small perturbation
..-.'" to the solution before t=500, in terms of Fourier coeficients:

" (a) jo, (b) 01 (larger-amplitude oscillation) and 62 (smaller-
0 4 - amplitude oscillation), and (c) 03.

U.)

02 _ ,_r,= 0 .1712± 0 .000 5 and y_=0.1401"±0.001. Inserling

. ... . w, the same parameter values, together with i = I in Eq. (6b),
________ into Eq. (14) and (3), yields y.= 0 . 17 1 1 and y_ -=0.1404.

0 2 4 6 8 10 12 Considering that this instability region occurs at the very
AvEPAGE VOLTAGE <ot >  lower end of the asymptotic linear region in the

FVI 2. 1. " characteristic calculation from Eqs. (17) using McCumber curve, for which the analysis of Sec. II was
- ' ),. 3-002, 1=2, and r=0, showing the McCumbcr developed, the agreement is more than satisfactory.

..... _,zrnnd curve {MCB) and the First zero-Field step (ZFSI). Figure 4 shows the stability boundaries, now exrssed
.hmw dciiad of region where ZFSl joins the MCB. in terms of average voltage, calculated from Eq. (14) with
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dent from Fig. 5, the main effect of a (small) magnetic

field is to reduce the width of the instability regions. The
010- points indicated by squares and circles in Fig. 5(a) are cal-

culated from Eqs. (17); the squares correspond to i7=0
and the circles to 71=0.8. The error bar on the lower cir-

o(s cle reflects the fact that for t#o both the ZFS states and
the McCumber states contain significant amounts of

............... Fourier components, thus rendering a clear distinction be-
0 A n=3 tween the two states somewhat difficult at the lower end

0 2 4 - of an instability region. This distinction is much sharper
0 2 6 8<t>10 for the other multimode points in Fig. 5(a), and the rela-

FIG. 4. Instability regions (shaded) in average voltage (i,) tive error bars are contained within the dimensions of the
calculated from Eq. (14) for ZFSI, ZFS2, and ZFS3 for dif- symbols.
ferent 0-loss values using a=O.05 and 1=2. Dotted line corre- The dynamic state into which the system evolves after
%ponds to 0=0.02 used in multimode theory. the switching shown in Fig. 3 is the fluxon oscillation

state associated with ZFSI. This fact may be clearly es-
a =0.05 and 1=2, for different values of P. The dotted tablished by comparing the results of the multimode
line corresponds to the value 6=0.02 used above. For theory, Eqs. (17), with those of the direct simulation solu-
these parameter values there is only one instability region tion of Eqs. (1) reported in Ref. 13. Figure 6 shows such
in the McCumber curve; however, by lowering/6 it is pos. a comparison. In this figure, the solid curve is the func-
sible to have as many as six such regions (the three lowest tion 0,(0,t), which is the voltage at the x=O end of the
of which are shown in Fig. 4). This result helps to clarify junction, as obtained by direct simulation. The arrival of
a long-standing experimental question, i.e., what deter- fluxons at the junction end is clearly apparent. The
mines the number of ZFS's that may be observed in the dashed curve is the same function as reconstructed from
I- V characteristic of a given junction? Eq. (16) using N=3. The bias value used in Fig. 6 is

This situation is illustrated in more detail for ZFSI in -y=O.60, i.e., near the top of ZFSI. For smaller values of
Fig. 5(a) and for ZFS2 in Fig. 5(b). In these figures the y the agreement is even better, and the two curves are
solid curves are calculated from Eq. (28) and translated practically indistinguishable.
into bias current through Eqs. (3) (this is done to facilitate Figure 7(a) shows a portion of the I-V characteristic of
comparisons with the numerical results, in which y is a the experimental sample S6-7/4 measured at a tempera-
direct control parameter). The curves labeled I corre- ture somewhat below the transition temperature of the
sponds to i7=0 and those labeled 2 to 7=0.8. As is evi- lead counterelectrode and in zero magnetic field. The

dashed arrows indicate switching from the zero-voltage
018 Ycurrent and from the first two ZFS's to the gap state.

() Figure 7(b) is the same characteristic with a lOX magnifi-
cation of the current scale. The dotted lines in Fig. 7 indi-

0 7 cate switching from higher-voltage to lower-voltage states.
Clearly evident in Fig. 7(b) is a switching from the bottom

0 16 of ZFS I to the zero-voltage state. This may be due to a
2 1 direct instability of the ZFS's toward the zero-voltage

015 state 4 rather than being connected with an instability of
0 the McCumber curve; such a mechanism is not contained

in our present model.

000 0.04 0.08 13 0.tZ
Y

Wb} 12-

032

! 4-

031 ON

20-

0000 0005 00 0 5 10me t 10

FIG 5. Stability boundaries in current y as a function of 0 FIG. 6. Time evolution of voltage at x=0 junction end as ob-
Ins calculated from Eq. (28) and Eqs. (3) for (a) ZFSI and (b) tained by direct numerical simulation of Eqs. (1) (solid curve)
ZFS2, for i7=0 (curves 1) and t1=0.8 (curves 2) using a-0.05 and as reconstructed from Eq. (16) using N=3 (dashed curve)
and 1=2. Squares and circles in (a) are calculated from Eqs. for parameter values a=0.05, 63=0.02, 1=2, i7=0, and
(17) for i7=0 and 0.8, respectively. y =0.60.
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IMA

(oa)

zet . . v/

0.A 5 20 0.0 0.5 1. 1.0

. J(b)

(b)

FIG. 7. (a) Detail of the I- V characteristic of experimental
%ample S6-7/4 measured at a temperature slightly below the
iransition temperature of the lead counterelectrode and in zero
magnetic field. Arrows indicate switching to the gap state. (b) ,1
Same characteristic with lOX-magnified current scale. Dotted -0,5 00 OS to
lines indicate switching from higher-voltage to lower-voltage FIG. 8. Stability boundaries in average voltage (0,) as a

t(a ( . function of magnetic field i' measured experimentally (circles)

and calculated from Eq. (28) (solid curves) for (a) ZFS1 and (b)

The characteristics shown in Fig. 7 correspond to a nor- ZFS2. Fixed parameter values: a=.026 and Is3.16.

malized junction length of about 1=3.2 and an a-loss 00re0.07 in (a) and 0o 0.0i in (b), giving rise to the shad-

term, estimated from the slope of the McCumber curve, ed regions between the solid curves.

(if about a=0.03. The experimental determination of the
3-loss term is subject to rather large uncertainties, and so and 0.05; the effect of this variation is indicated by the
we have treated 3 as an adjustable parameter in what fol- shaded regions in Fig. 8(b). The agreement obtained here
lows. An essential feature of the experimental procedure for the behavior of the o_ branch is much better than
i- that the parameter values for a given junction can be that of Fig. 8(a). The reason for this fact may be that
"tuned" experimentally by varying the operating tempera- there is no direct switching from ZFS2 to the zero-voltage
ture. state as there is for ZFSI, as can be seen in Fig. 7(b), or

Figure 8(a) shows a comparison between the experimen- that here w- > 3.
tally determined stability boundaries (circles) in a magnet- Figure 9 shows a similar result for ZFS1 at a higher
ic field associated with ZFSI and those obtained from Eq. temperature, for which a=0.043 and 1=2.56, and for "
12R), shown as solid lines. Experimental values of voltage
and magnetic field were translated into normalized terms
uing the formulas (,)=VI 0f, and ?1=21roet/boI,
where V is the physical voltage, %co is the magnetic flux
quantum, ht is the applied magnetic flux threading the
ju nction, and f, is the plasma frequency.12 The experi- .
mcntal data were taken at a temperature for which
a=0.026 and 1=3.16, and these same parameter values
were used in Eq. (28). The fl value used in Eq. (28) was 2 .

varicd between 0 and 0.07; the effect of this variation is
indicated by the slight thickening of the curves in Fig.
,(a). The agreement between the experimental and I _,_ ,_ ,_,_....

theoretical values for w,. is reasonable. The large -0s 00 05 to ts i 20

dicrcpancy for the w-_ branch may be due either to the FIG. 9. Stability boundaries in average voltage (6,) as a
fact that here (o lies considerably below the lower limit of function of magnetic field 77 measured experimentally 'circles)
the asymptotic linear region of the McCumber curve and calculated from Eq. (28) (solid curves) for ZFSI us)ng fi ed

or to the fact that a switching mechanism not parameter values a=0.043 and 1=2.36. 6 in Eq. (28) is vaned
dcscrtbcd hy the model is involved, as mentioned above, in the range 04/00.07, giving rise to the shaded regions be.

I-Izurc R(b) shows a similar comparison for ZFS2, using tween the solid curves. Triangles indicate experimental stability
11e canie paramcter values (same temperature) as in Fig. boundary a* of the stable piece of the McCumber curve that ap-

, Thc /7 value used in Eq. (28) was varied between 0 pears below the bottom of ZFSI.
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larger range of magnetic field. As before, circles are ex- described in terms of the growth of parametrically excited
perimental points and solid lines are calculated from Eq. instabilities of the McCumber curve. This analysis gives
(28). Also, as before, the shaded regions between the solid good agreement with both numerical and experimental re-
curves represent the effect of varying /3 between 0 and suIts in the asymptotic linear region of the McCumber
0.07. Two new phenomena are represented in Fig. 9. The curve and for sufficiently small values of the applied mag-
first is that at a field value of about q=0.8, there is an netic field. It would be useful to extend the analysis to
abrupt change in the behavior of the experimental ow+ the region of the McCumber curve below the asymptotic
branch. Physically, this corresponds to the disappear- linear region in order to be able to study low-order steps
ances of ZFSI with increasing field and the growth of the in longer junctions.
second Fiske step (FS2) at approximately the same volt- Numerical integration of the multimode equations veri-
age ' The perturbation theory result derived in Sec. IV is fies that the parametrically excited instabilities evolve into
approximately valid only for sufficiently small values of fluxon oscillations. The multimode approach is a useful
?7; it cannot be expected to hold for larger field values, alternative to the direct numerical simulation of Eqs. (1)
The second new experimental phenomenon is the appear- inasmuch as it gives reasonably reliable results at a con-
ance of a stable portion of the McCumber curve below the siderably reduced computing cost. It should be remrnem-
bottom of ZFSl at this temperature. In Fig. 9 the lower bered, however, that truncated mode expansions can be
curve indicated by circles is, as before, the bottom of expected to give reliable results only when the dynamic
ZFSI, and the curve indicated by triangles is the lower states in question are reasonably smooth. Here, as else-
stability boundary (wo) of this new piece of stable where, the study of phenomena such as subharmonic gen-
McCumber curve. eration and chaos will presumably require the use of dif-

We note from Figs. 8 and 9 that the experimental sta- ferent tools.
bility boundaries are systematically higher than the corre-
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STABILITY OF DYNAMIC STATES IN JOSEPHSON JUNCTIONS

Peter L. CHRISTIANSEN
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Instabilities of dynamic states in linear Josephson junctions modelled by the perturbed sine-Gordon equation are
investigated experimentally, computationally, and by stability theory. The narrow line-width of the electromagnetic radiation
from the circular Josephson oscillator is determined computationally and by perturbation theory.

1. Introduction I being the circumference of the oscillator, are
used. The detailed choice of initial conditions in

The present paper describes recent results con- the numerical solutions of (1)-(2) is described in
cerning instability of dynamic states in the linear [1-2].
overlap Josephson junction obtained in ref. 1 and
line width of the electromagnetic radiation from

the circular Josephson oscillator obtained in refs. 2. The linear Josephson oscillator
2-3.

In both cases the Josephson oscillator is mod- Fig. I shows a portion of an I- V characteristic
elled by the perturbed sine-Gordon equation [4) obtained as the relationship between bias current,

y, and resulting average voltage on the junction,
1- , - sin (P - a,, - 0. , - () (,(0, t)), by computational integration of eqs. (1)

and (2a). For intermediate-length (/ < 5) Joseph-
in normalized units. Here, *(x,t) is the usual son junction we use an extension of the multimode
Josephson phase variable, x is the distance along theory developed by Enpuku et al. [5], which
the junction, and t is time. The term in a repre- amounts to an expansion of the solutions of the

scnts shunt loss due to quasiparticles crossing the perturbed sine-Gordon equation in a truncated
junction, the term in P represents series loss due series of time-dependent Fourier spatial compo-

to surface resistance of the superconducting films, nents. Tis approach provides very accurate re-
and "y is the uniform bias current. For the linear suits at a lower computational cost than direct

oscillator we apply inhomogeneous Neumann numerical solution of the mathematical model [6].
boundary conditions In fig. I we observe an instability for y - < y <y .

or w- < (0,) <w.+. In this region the dynamic
'p,(Ot) =' (l,t) l, (2a) state without spatial structure, , = 0(t), which

corresponds to the McCumber branch (MCB) in
where I is the length of the junction, and -q is the the to c he bcomes unsb (to sl

extenalmageticfied. n th ciculr osilltor the I- V characteristic, becomes unstable (to small
external magnetic field. In the circular oscillator perturbations). As a result a switching occurs to a
periodic boundary conditions dynamic state with a spatial one-soliton structure

which corresponds to the first zero-field step
,(0, t) (, 2, 2b) (ZFS 1) in the I-V characteristic. The transition

'0,(0, 1) 0,(I, 1), which may involve creation of breather-modes [71

0167-2789/86/$03.50 © Elsevier Science Publishers B.V.
(N orth-Holland Physics Publishing Division)
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ZFS I MCB lmA 3
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::). - ........... , I

U -02 so~'; OV V

~ W* a)
0 I I0 2 4 6 8 10 12

AVERAGE VOLTA.GE - 0t Z tFS2 Os

Vhg. I -V characteristic calculation from cqs. (1) and (2a) ZFSi ZFS 2 Fi 3. Stal
uing n=005. ,8-0.02. /-2, and 1?-0, showing the a u
NcCumber background curve (MCB) and the first zero-field 1001.A  c .ant
step (ZFS 1). Inset shows in detail how ZFS I joins MCB. .. .- c6 hil boun.

I3.16 ind

will he an interesting object to study by means of ....... )06
spectral methods. ...........

Fig. 2 illustrates the corresponding experimental For sr
findings both at the first and second zero-field __boun aric
steps (ZFS 1 and ZFS 2). In the two cases one and 50 1V V by gene:
t\% solitons respectively are travelling back and (b) c
forth on the oscillator in different configurations reduc t

[X]. Fig. 2. (a) Detail of the I-V characteristic of Nb-NbO,-Pb equ on f
A stability analysis is carried out for 1 = 0 overlap junction (experimental sample S6-7/4 with l-4.4 and

a - 0.006 at 4.2 K) measured at a temperature slightly below gi, •
t1 inlg the transition temperature of the lead counter electrode and in 3 s

+ ( zero magnetic field. Arrows indicate switching to gap state. (b) ment I N"
. , +( t(3) Same characteristic with 10 x -magnified current scale. Dotted mn

lines indicate switching from higher-voltage to lower-voltage th eagi
H1ere J,,p) is the McCumber solution in the states. th e o

power-balance approximation 191 st b(
t= 2 am [,/k: k1, (3a) for T1 0).

vay g /3

,A here am is the Jacobian elliptic function of mod- where overdots denote differentiation with respect th curves.

tis A. and k satisfies to t. For small k's the stability boundaries for the a d r

y 4ol" A )/k. (3b) average voltage, w, and w-, are determined ap- experi eni

proximately as solutions to the equations son e. T

/i hk ) being the complete elliptic integral of second be ueto t

kind. The small perturbation (x, i) is given by b2 
= 1 1 - t c theorel

2(x 2- g he
'At,. t) =t()exp(ibx) (3c) 2 1/2 In g. 1

N tth h' ,i / I. i = 0 , 1 , 2 ,. ... In se rtio n in to e q s . + 1 - --8 0. 1 7

I and (2a) yields the damped Hill's equation ( 1 ")
2 . (5) ent et

(t + flh2).* {h+cos~o(t)y=O. (4) 8a 2 8w4I resu ts obt
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3. The circular Josephson oscillator
3

r

So far, we have focussed on the instabilities of
the dynamic states on the linear oscillator. In this
section we shall demonstrate the extraordinary
stability of the dynamic state in which one soliton I.
rotates on the circular junction. Thermal noise or
external microwave radiation is unable to perturb

the soliton velocity much from the power-balance
W_ W_ velocity predicted by perturbation theory [11]. As

1: a result the electromagnetic radiation emitted by-05 00 0.5 1.0
0the oscillator has a very well-defined frequency.

Fig 3 Stability boundaries for ZFS I in average voltage (0,) Experimentally, a line-width of less than 5 kHz at
a, a function of magnetic fie!d if measured experimentally a resonance frequency of 10 GHz has been found.
o.Jrcle) and calculated from approximative equations for sta- A relative accuracy of about 10 - is therefore

hhit', houndarics (solid curves). Parameter values: a-0.026, required for computational line-width determina-
1= 3 16 and 0< / < 0.07. tions. We have performed simulations of eqs. (1)

and (2b) with this degree of accuracy on a CRAY-
1-S vector processor. In the case of microwave

For small values of -q (0 0) the stability radiation, y in eq. (1) was replaced by
boundaries have been determined approximately
hv a generalization of the method leading to more y = Ydc + yac sin (f2t), (la)
complex equations than (5). Parmentier [10] has
reduced the damped Hill's equation (4) to a Lam6 where yd, is a constant, and Yac and 12 are ampli-
equation for which exact stability boundaries are tude and frequency of the microwave.
given. Ia fig. 4 the solid curve is the resulting computa-
i:g. 3 shows a comparison between the experi- tional determination of the line-width as the

mcntallN determined stability boundaries (circles) standard deviation of the electromagnetic radia-
in a magnetic field associated with ZFS 1 and tion frequency, at, versus microwave frequency, 2.
those obtained from approximative equations for A perturbation theory using
stability boundaries (eq. (5) and its generalization
for ,) 0), shown as solid curves. The effect of O(x, t) = pV(x, t) + 0(t), (6)

varying fl is indicated by the slight thickening of
the urvs. he nstailiy rgio becmessmaler where 0'(x, t) is the travelling soliton and ;(I) isthe curves. The instability region becomes smaller a small background, leads to the ordinary differen-

as P3 and -q are increased. The agreement between tial equation for 0()

experimental and theoretical values for w. is rea-
sonable. The discrepancy for the w- branch may . -

be due to the fact that the approximations used in -'- sin4' = a,4 + Ydc + r'8 smn(S2t) (7)
the theoretical expression are poorer for low val- as well as a determination of the soliton velocity
ucs of the average voltage. u(t). The soliton revolution time, T, (and the

In fig. I the numerical procedure predicts "+ - corresponding frequency, f, = 1/T,) has first been
1712 and y = 0.1401, while eq. (5) leads to determined from the equation

• 1711 and and y , 0.1404. Thus, the agree-
rncnt between the computational results and the 2_ f €+ 7 'u( t) dt = 2r, (8a)
rc:.uhs obtained by stability theory is very good. /

V 77711,
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Standard deviation of the sine-Gordon model is an excellent testing
1 ground for nonlinear phenomena in the sense that

computational results and theoretical predictions
IN ~ can be verified by comparison with experimental

0-3 measurements. In this paper we have only consid-

1 ~.3 .ered soliton dynamic states and their instabilities.
, Chaotic phenomena also occur on the Josephson

, junction. To predict these theoretically, Melnikov-
si rold sytemhis ehig. apply muto begneraized.1 . Anold sytehim s which apply 11 uto beow-draien-

.*5 to many-dimensional systems.
0.51.15

Driving frequjency -
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For the driven. damped space-independent double sine-Gordon equation threshold curves for horseshoe chaos or the
Smale type are derived by the Mclnikov technique. Difterent qualitative behaviour of the solutions is round in diflerent
regions or parameter space.

I. Introduction

During the past years a great deal of interest has been devoted to the study of the motion of simple
nonlinear oscillators in the presence of dissipation and periodic forcing terms (see [ 1, 2), e.g., and references
therein).

In particular the dynamics of a single classical particle moving in a sinusoidal potential under the
influence ot damping and bias was extensively studied owing to its relevance for specific physical systems
such as for example Josephson junctions. Numerical tools such as Poincari sections, Liapunov exponents.
power spectra analysis, etc. (1] and analytical ones, e.g. the Melnikov-Arnold technique [1] were used
to characterize the great variety of responses of the system (as a parameter is varied in the equations).
ranging from multiperiodic motion to a fully chaotic one.

In view o more general applications in solid state matter, it is of interest to extend the above studies
to the case in which the potential is periodic but not sinusoidal. A first step in this direction is to consider
single particle5 moving in potentials which are the superposition of two sinusoidal potentials or the types
A (I -cos 4,) and A22(1-cos(4)/2)) respectively under the influence ot loss and bias. This leads to the
study of the following equation:

-0,, = -AI sin 0 - lA2 sin 10 + r[A cos(wt) - a,]. (I)

When e = 0, (1) is recognized as the (space-independent) double sine-Gordon equation, which is known
to play an important role in condensed matter physics [3, 4) (for a mechanical analog of it, see [5)). The
r-term in (1) represents a generic structural perturbation consisting of a loss term (a4,) and a time-
dependent periodic bias, present in physical systems with driving forces. As a result of such perturbation,

016S-212S/86/S3.50 Q 1986, Elsevier Science Publishers B.V. (North-Holland)
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the integrability of (1) (i.e. when e =0) is broken. For particular values of A, a, w, this gives rise to the
appearance of the so-called 'Smale horseshoe' (1] in the Poincari map of (1). The aim of the present
paper is to analytically investigate the dynamical behaviour of system (1). More precisely, by using the
Melnikov-Arnold technique with given values of AI, A2 in .(1) we will determine values of the parameters
A, w, a, for which horseshoe-chaos is predicted. To this end we first briefly recall in the next section the
Melnikov-Arnold technique. Then, in Section 3, we study the phase portraits of the unperturbed equation
(1) (E = 0), as A,, A2 are varied in the range (-co, +o). Finally, in Section 4, we apply the Melnikov-Arnold
method to (1) and derive for different cases (corresponding to different values of A,, A2) parameter values
of A, a, w, for which chaos is predicted. The last section contains a discussion of the main results of the

paper.

2. Melnikov's function

We start by briefly recalling the main ideas behind Melnikov's method (a full treatment is found in [I)).
We consider a system of two ordinary differential equations of the form

d 0/dI=fo(, y)+ef,(.0, y,e,t), dyldt=go(.0,y)+sg1(0,y,e,t) (2)

or, in short notation,

dX/dt = ho(X)+ eh,(X, t, e) (3)

where X = (0, y), ho = (fo, go), and hi = (f, gi). For system (2) the following conditions are assumed to
be satisfied:

(a) When r = 0, the system has an equilibrium point of the centre type at some point (ko, )'o), which
for simplicity we assume to be simple.

(b) The functions fo(0, y) and go(k, y) are analytical in 0 and y in a sufficiently large neighbourhood
of the point (0, Yo).

(c) The functions f,(O, y, e, t) and g(4, y, e, t) are analytical in (, y) in a sufficiently large neighbour-
hood of (460, yo) and for all I < eo. They are continuous and periodic in t with period 2-T.

(d) For E = 0, system (2) possesses a homoclinic orbit, which we denote by

X(1) = (_ (t), x,(t)), (4)

to a hyperbolic saddle point X,= (46,, y,). Observe that these conditions are all satisfied for our system
(I). In what follows we also consider the case in which the unperturbed system has heteroclinic cycles
connecting several saddle points.

With the assumptions (a)-(d) it can be shown [1] that for e small enough the saddle equilibrium point
X, = (,,, y,) gets perturbed to a saddle fix point X. = (0t,, y,) of the Poincar6 map for (2).

In addition, the perturbed homoclinic orbit splits up into a stable orbit denoted by X,(t, to) defined in
the interval to - t <oo, and an unstable orbit X(t, to) defined in the interval -oo< t -_ to. With to denoting
the initial time the following results apply [6]:

Xl.(t,(a) =X(t- to)+CXPI(t, to)+ OWe)  IE [ to, CO(, p -S(5
pmu)Itt -o0, to], Pau

and

dX (t, to)/dt = Dho[X(t - to)]X1( t, to)+ ht[.X(t - 1), t] (6)
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where the index p may assume the values u (unstable orbit) and s (stable orbit), and D. denotes the
oartial derivative with respect to x. Note that the initial time, to, appears explicitly, since solutions of the
perturbed system are not invariant under arbitrary time translations ((2) is in general non-autunomous
for r * 0).

To first order, the separation between X,(:o, to) and X,(to, 1o) is found by taking the scalar product
between (X"-X') and a unit vector transverse to ho(X(t.)). In short notation, this separation, d(tu), may
be expressed as

Eho[X(0)] A [Xu(to, to) - X;(to, t()] +0(e 2)
I~to) = hUM (7)

Here the wedge product is defined by XA Y=XY 2-X 2 Y1 , and hoA[XU -X] is the projection of
[X',-X:] into ho.

The so-called Melnikov function is proportional to the distance d(to) between the stable and unstable
manifolds in the Poincari map at 1,, and its expression (valid on long time scale), is given by (for details,
see [])

MO to) ho[X(t - to)A h,[X(t - 10), t] exP{I - Trace D,h[X(s)] ds} dt. (8)

If M(to) has a simple zero independent of e, and ifdM/dt # 0 at t = to is satisfied, then the local stable
and unstable manifolds intersect transversely. Such transverse intersection implies infinitely many others,
this giving rise (in the Poincard map) to the appearance of a fractal invariant hyperbolic set called the
Smale horseshoe (1]. A Smale horsehoe is structurally stable and contains a countable set of unstable
periodic orbits, an uncountable set of bounded nonperiodic orbits, and a dense orbit.

[n the following we will use the existence of a Smale horseshoe (i.e. M(to) =0, dM/dt $ 0 at t = t,) as
a criterion of the onset of chaos.

3. Phase space analysis

Before applying the Melnikov method to equation (1) it is of interest to study how the phase space
portraits of the unperturbed equation (here written as a first order system)

$ =y, 9 =-A 1sin -jA 2 sin 1 (9)

change when A,, A 2 are varied in the range (-o0, +00). To this end we first observe that (9) is a Hamiltonian
system with the Hamiltonian given by

H(-,, y)=y 2+A,(-cos 0)+ A2 [ -cos i6. (10)

Because of the periodicity of (I0) we can restrict ourselves to the range of -2rr1 4I 2 r. Furthermore,
we note that the general case A,, A2 E (-00, +00) in (9) can always be reduced to the case in which IA [ = I
and A2 E (0, +00) by shifting 46 -+ 0 + 27r (in order to change sign to A2), and by rescaling time (in order
to normalize A,). Without loss of generality we shall therefore concentrate on the cylindrical phase space
(-2T -<_ 2w) of system (9) in the cases

(a) A=-1, A 2 -A,

(b) A1=l, A2 -A.
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In cases A) -- I and A > 0 one easily finds that when 0< A <4 the system (2) has fixed points of centre
type at

(b, y) - [+2cos-'(A) +4k-, 0], k =0,±1,-t2....

and fixed points of saddle type at

(4,,y)i(2nir.0), n=0,±,2 .....

The level set H(0, y) = 0 is composed of iwo homoclinic orbits based at

We shall denote these two homoclinic orbits by (4-,, - They are given by the following analytical
expression (see Fig. 1(a)):

_--7-)- ±4c tg-L'

= 2v'.(4- A) sech[ -A] {tgh [( -) t]}

A + (4- A) sech'-( ± )

Besides, two heteroclinic orbits (_*i, 9-*) exist from (-27r, 0) at t- -oo to (2,r, 0) at t +oo, which

have the following analytical expressions (see Fig. 1(a)):

±2,./A(4+ A) cosh[(/ TIA)t] (12)

4+A +A sinh2[( I )t]

When AI -I and A 2 - A ;R4 the system (9) has fixed points of centre type at

(4,y)-( 4 mr,.0), m=O,±I,±2,..,

and fixed points of saddle type at

(,,y)- ((4+2)w,0], l=0,±1,*2.

Further, the level set

H(0,y) = 2A

is composed of two heteroclinic orbits (_,_) based at (0, y) - (±2rr, 0) having the same analytical
expressions as in (12). We note that in this case the homoclinic orbit (11) disappears (see Fig. 1(b)).
Now we shall analyze the case when A I = I and A2 A >0. One finds that for 0< A <4 system (9) has

fixed points of centre type at

(O,y)- (2nit,0), n 0, ±1, ±2,...
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and fixed points of saddle type at

((.y)-[2r+2cos'(-4)+4n7,O], n=O,±l,±2,.

The level set H(4O,y)=(A^+8Ak+l6)/8 is composed of two heteroclinic orbits based ait

('t, Y) [2Pr ± 2 cos-'(- 41,\), 0].

We shall denote these two heteroclinic orbits by (~ r.They are given by the following analytical
expressions (see Fig. 2):

4t- Atghl l + 2ir,
Ll 4+A 8 J

(16 -X)sech( v6 A 2  
(I

2[4+A+(4-A)tgh2(.' ! 2k-)

Furthermore, two heteroclinic orbits exist based at

(2) (b)

Fig. I. Phase space diagram for the H-amiltonian (10), (a) Phase space diagram when A, -1. O< A <4. (b) Phase space di agrum
when A,--I, A>4.

Fig- 2. Heteeociinic orbits (13) and (14).
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having the following analytical expressions (see Fig. 2):

(16- A2) sech 2( 8 T ) (4
2[14 -A +(4+Ak) tgh'(-16 8 A,)

If A, I and A2 - A > 4, system (9) has fixed points of centre type at

(4',y)-(4'n,O), I=0,*l,±2....

and fixed points of saddle type at

((k,y)-[(41+2),r,O], 1=0, *1,± *..

The level set H(4k, y) = 2A is composed of two heteroclinic orbits based at (4s, y) -(±L21r, 0) with
analytical expressions given by (the phase space in this case looks like Fig. 1(b))

=~ *4

4. Melnikov's method for the double sine-Gordon system

In this section we shall apply Melnikov's method to system (1) in the various cases analyzed in the
previous section~.

We start with the case A, = - 1,0< A <4. Using the homoclinic orbits (11), the Melnikov function reads.

A'1 *(1s. A, A, w*, a) f J+00 9;,(t)[A cos(wi + wl) a9*_,(t] di

2v'~( 4-Ase[ A] F4h[ k[ o~f+c") l
f _.A + (4 -A) sech( 4-A I

24_04- A) sech[ 4- I:tgh[ 4-A] Jd.(
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Making the cosine term explicit and observing that _y 1 (t) cos(co)dt-0, because it is the integral

of an odd function, we get

M*(to, A, A, w, a) = A..-(A, w,) sin(ato) - aP,(A ), (17)

where

- 4-A 1 12

and

2 /(4] h -I sin(ot) dI

A + (4_A) sech( /- ).

From (17) one sees that a necessary condition for M* to have a zero is

I aF...((A)
J~ (A a) e.1 (18)lAR_,(A, co)l

If the inequality (18) is strictly satisfied for all frequencies w,, then the Melnikov function (16) has a

simple zero. When (18) becomes an equality, the zero of M* is nontransverse and this corresponds to

the so-called tangential intersection (dM*/dt = 0 at t = to).

The frequencies that will correspond to this case are

(2k+ l)rr2 k=0, ±-1, 2,.., (19)2o 2To

where To is the value of to for which (17) becomes zero.
Then, if (18) is satisfied and

0 (2k + 1)±2io , 9 ,,l -,2 . .( 0

we have that system (9) has in its dynamics the so-called Smale horseshoe chaos.

From relation (18) we can also obtain the threshold curve for getting a Smale horseshoe in the parameter

space (w, a, A). If we fix one of these parameters and we consider the other two as functions of each

other we can obtain different threshold curves. For example, fixing A we have the following threshold

curve in the (w, a) parameter space:

A,§_,(,l ,w)A .,(A) , A >0fixed, 0<A <4. (21)

This curve (see Fig. 3) represents the bifurcation diagram under which system (1) has in its dynamics

a specific kind of chaos (Smale horseshoe). In Figs. 3-6 the shaded regions correspond to negative value

of a, and curves for -a are shown. In the parameter regions below the a-curve horseshoe chaos occurs.
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0.3
0.30

0.2

0.15
0.1

0.0 0.00
0 1 2 3 0 1 2(a) w (b)

a X. 200

2.0

100
1.0

0 .I 0 1 23
(c) w (d) 2 W

Fig. 3. Bifurcation curves for (he homoclinic orbits (I I) in the (o, i) parametr space. A -0.5, A --. (a) A -0.001; (b) A - 1.0;
(c) A -3.5; (d) A -3.99. Shaded regions: -a is shown.

The same analysis can be carried out for the heteroclinic orbits ( in Fig. I(a), this giving a
threshold curve in the (a, w) parameter space characterized by

AR._,(A;, w)
a - kw, A>0 fixed, 0<A <4, (22)

F.., (A)

where

2v'AX(4+ A )cos h [/T~I AiIcos (cut)dI
S 4+A +A sinh2[.,T,, t, 1

and

f'k {2%/,k(4 +A) cosh(.fF ] 12 d t.
f +, 4+A+Asinh2[ 'At)

The threshold curve given by (22) is shown in Fig. 4 (the upper region delimited by the curve represents
the chaotic region).

When A =- and A >4 we find that the bifurcation diagram for the orbit (,k.,.9-) in Fig. I(b) is
equivalent to that or the orbit (_, .. _) and therefore it is given by the same curve (22) (the only difference
is that now A > 4) (see Fig. 5).
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* 0.4 X =0.001 a 0.3Xa .

0.2

0.2

0.0 / 0.0'l
0 1 2 W 3 0 1 () 2 W 3

* 2.0 X5 a 2.0

1.0 1.0

0.0 0.0
0 1 () 2 W 3 0 1 () 2 3

Fig. 4. Birurcatian curves rot the heteroclinic orbit (12) in the Ce. kI) parameter space. A-=0.5, A1 - -I. (a) A -0.001-, (b) A -1.0;

(c) A -3.5; Cd) A - 3.99. Shaded regions: -a is shown.

a 0.2 X =k01 a 0. 15x=5.

0.10
0.1

0.0 
0.05

0 1 () 2 W 3 0 (b) W 3

0.1A5 -X 6.0 a 0.12 X 10.0

0.08
0.10

0.05 0.0

0-00. 0.00
0 1 () 2 W 3 0 1 () 2 W 3

Fig. S. Bitrcation curves for the heteroclinic orbit (12) in the (a, w) parameter space. A-0.5. Al - -I. (a) A -4.01; (b) A -5.01

Cc) A - 6.0; (d) A - 10.0. Shaded regions: -a is shown.
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In the case A 1, O A <4, using the heteroclinic orbit in (13) we have

M*(eo, A, A, w, a) = fi (t)A cos(wt + wot) -a() dt

S16-A2 2

(16 -A2)sech( -L

64 /-1 E 16- 2  dt (23)

uf 2[4+A+(4-A)tgh 6

For (23) to have a zero we must have

A/(A,w)l (24)

where

2 16-A 2  2

'0 (16 - A )sech V( 6 - - 1)
\ 64 ,

and

X2 I 6- A
(16 /A cos(1O

f 2[4+A +(4-A) tgh 2(/1 II~
V 64 A

In what follows we do not consider the calculations for finding the frequencies which correspond to
the tangential intersection. As above they are very easily round.

The threshold curve in the (a, wi) parameter space reads

A, (A) ' A>O fixed,Oe A <4. (25)
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This curve is shown in Fig. 6. In the case A, = 1 and 0'A <4, using the heteroclinic orbit (14), the

Melnikov function becomes

M*(t,, A, A , a ,-) = .9*(t)(A cos ( di

(16164A
2)sc 164 /1 A cos(wi)

A+(4+A) tgh ( 6 - )] 

(1- (2 16-A 2 f)
64f (.. .. ) dt. (26)

Making the same analysis as before we arrive at the following threshold curve:

A A.(A, w)
F, (A)

a-= .(A), A>0fixed, 0rA <4, (27)

which we report in Fig. 7.

a 0.4 0.0 a 0.6 W,=.0

0.0 

0.4

0.2

00 . 0.0
0 1 2 3 0 1 (b) 2 3(a) 

(b

a 3.0 X =-3.5 a 120 X=399

1.5 Of 60

0.0 

00

0 1 2 3 0 1 2 3
(c) 

( )

Fig. 6. Bifurcation curves for the heteroclinic orbit (13) in the (a,wo) parameter space. A-0.5, - 1. (a) A =0.0; (b) A O1.0
(c) A - 3.5; (d) A - 3.99. Note that when A - 0.0 one obtains the same bifurcation curve as that obtained for the classical pendulum.

Shaded regions: -a is shown.
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a ~ ~ ~ ~ ~ f 04 C. a.CX 0

02 -Q2

a 0.3 X=. 0.3 X 3.99

02 Q2

0.! 0.1

0.0 CIO

0 1 () 2 W 3 0 1 () 2 3

Fig, 7. Bifurcation curves for the heteroclinic orbit (14) in the (a, w) parameter space. A -=0.5, A I- 1. (a) A -=0.0; (b) A =1.0;

(c) A - 3.5; Md A -3.99. Note again that when A - 0.0 one obtains the same bifurcation curve as in the classical pendulum.

The last case is A I 1, A2 >4, in which we have

M (to, Ak, A, w~, a) f j~(1)[A cos(ol + c&Uo) - a;*(t)] d i

f2,/AX(A - 4), cosh ( 4+A) A cos(wti)=s: ~ (A -4)+A sinh2( + I)

. I2J/-(A -4) cos h~ 4+12

-a I4 d. (28)
f (A -4) +Asinh2( 4t)

The threshold curve

A fi,) A>O0fixed, A >4, (29)
F1 (A)

is shown in Fig. 8.
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a X 4/.01 a X.=5.0

0.25 0.20

0.24 - 0.15

0.23 0.10

0 1 2 3 0 1 2 3(o) (b) w

X )~10.0 a0.0.40X=0-

0.12

0.035

0.08

0.030

0 1 2 W 3 0 1 (d) 2 w

Fig. S. Bifurcation curves for the heteroclinic orbit (15) in the (a, w) parameter space. A-0.5, A, - I. (a) A -4.0; (b) A 5.0.

(c) A - 10.0; (d) A - 100.0. Note the reduction to the pendulum when A w 5.0.

5. Discussion

In this section we discuss the results obtained in the previous section. Let us start by analyzing the case
A = 1, A -- 0. In this case for A = 0, equation (1) reduces to the pendulum equation, and the two heteroclinic
orbits, (13) and (14), reduce to the analytical expression of the pendulum separatrix. As one would have
expected, we obtain in this limit (A =0) the same bifurcation diagrams as for the simple pendulum (see
Figs. 6 and 7). As A goes from zero to four, the threshold curves in Figs. 6 and 7 change qualitatively
and quantitatively. The turning points of these regions are the zeros of the function i,(A, w) in (25).
When A = 4, system (9) bifurcates changing its phase portraits from Fig. 2 to a figure similar to Fig.
I(b). We see that during the bifurcation the heteroclinic orbit (13) disappears merging into the hyperbolic
fixed point (27r, 0). (An analysis of the linearized system (9) shows that this point is degenerate). For
A >4, the bifurcation diagrams are shown in Fig. 8. When A >.4, system (9) reduces to the pendulum
equation, and, as expected, we see from Fig. 8 that in this limit the bifurcation diagram of (9) reduces to
that of a pendulum.

Let us now consider the case A = -1, A a 0. Increasing from zero to four (excluded) we can see in the
figures how the bifurcation diagrams depend on this parameter. When A =4, the system bifurcates. The
phase portraits change from Fig. I(a) to Fig. 1(b). We note that the centres [+2cos-'(,A)+4k'r,0].
k = 0, ±1, *2,..., disappear. This is because the fixed points (4nr., 0), n = 0, ±,±2,..., are degenerate
as one can easily see from the linearization of the system at those points (we note that our system is
structurally unstable). One can also see that the homoclinic orbit (11) degenerates into the fixed point
(0, 0), whereas the heteroclinic orbit (12) continuously changes its shape becoming the heteroclinic orbit
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shown in Fig. 1 (b). When A 214, the term -Ik sin(40) becomes dominant and we get again the pendulum
equation. The bifurcation diagrams obtained above are also in agreement with earlier results (6-8].

We finally observe that the bifurcation diagrams in Figs. 3 and 4 do not reduce to those of a pendulum.
when A- -0 (note that system (9) in this limit is the antipendulum). In the limit A -0, however, the
homoclinic orbit (11) and the heteroclinic orbit (12) do noi exist any more, they indeed degenerate in
the fixed points (27r, 0) and (0, 0) respectively. On the other hand, for small values of A (A - 1) the
homoclinic and heteroclinic orbits shown in Fig. l(a) get closer to each other, and an analysis based on
a first order estimate of the splitting of the corresponding stable and unstable manifolds could be too
crude. This last point we plan to investigate in a future paper.
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Abstract. At4alytlc results for trianoular currentohase relatiut.

In this paper we show several analytical approaches to The JTL is modeled by a perturbed sine-Gordon
study the effect of dissipation on fluxon motion; our Oquation
attention is mainly devoted to the surface impedatce
te,m which is the main quantity responsible for i- n - . - o (1)
qualitative dynamical changes in the junction.

where 0 is the phase difference between the two
Introductiol . superconductors formirg the junction, a is the

normalized parallel Conductance, A is the normalized
Soliton (fluxoni dynamics In the long Joseohson surface conductance and j% is the bias current

)unction lJosephson transmission line or JTL) has for normalized to the ,aximu4s Josephson current; space is
."any years been one of the most active research areas normalized to the Josephson penetration length ,., and
within the topic of Josephson tunneling. Fluxons show time is normalized to the inverse of the Josephson
particle-liike behavior in the fact that they carry plasma frequency '1, a //ijA where E is the speed of
ierqy a-id momentum, they are structurally stable in the light in the Josephson transmission line.
serse that small perturbations do not destroy thom, and In what follows we will consider the case in which
they can travel at almost this speed of light within the the length of the junction is big enough to disregard
'
T
L. All these features sa-! fluxons excellent the effects of the boundaries in order to concentrate,

canjiJatei for being the building blocks of new fast our attention on the stationary fluxon motion.
Electronic devices, as has recently been demonstrated In general when as A and it are different from zero
P-.prIfietaliy cIl. Eq. I can not be solved analytically. To extract sore

In vie of this it is important to study the analytical information one can approximate the sine te,m.
effects of various forms of dissipation on the flucon in Eq. I by using a triangular current-phase relation
,nitio,, sice these dissipations are responsible for with 2a periodicity (Fig. 1) f(#) definkd by
distortion and even decay (switching) of the fluxons.
Thtnugh a number of numerical simulations have been done r . - En), -a/2 * 2nu 1 i u/2i2nx
to study this effect (21, very few analytical results f(f) a (2)
are known. This is mainly due to the fact that the model . -ki u-2nu, u2 + 2nn 1 1 34/2-2nn
equatio-i for a Josephson transmission line, the
perturbed sine-Gordon equation, has no known general
analytic solution. Hence the main results are given in , " , i
terms of a peeturbative analysis around known solutions a-
of the sine-Gordon equation (Ref. 3). -m- (c)

From numerical simulatioris C23 it has been shown 6 3 Its)
that due to the presence of surface damping a number of

of the flunon together with a non-Lorenzlan contraction; 2 .

this is in contrast to the relativistic contraction
precent in the solution of the non-dissipative _ ).
sine-Godon system. (ii) The occurrence of an overshoot' 2
in the fluvon pulse accompanied with damped 2
c ill ations. (iiil A decrease in the maximum bias that
can austain pure fluson motion, with a corresperding 0 : b 1

Jectease of the energy; thus the pure solston solutions k 0 -k -1 -2 0 2

betcTP u,,table against the rotating solution. - (')
In the first section we show an analytical approach

"o, solvi-ig the perturbed sine-Gordon equation with a Fig.l. a) Triangular current-phase relati.n fOl). lb.c,
citcawise linear approxinatIo of the non-linear sine Fluxon line shapes with * - 0.02,.4 - 0.01, ana i 2/n.
te,.. In the second section we consider a phase-space ;(b u- 0.9 giving - - 0.079. (c) u- 1.0 gidiy-L- .).56,
a.t1,Sis that. although very simple, gives surprisigl I
q,:. results in P-odicting the frequency and the damping The main Idea of this procedure is that no q. I
c,%ta,,t sf the ,.ershoot cscillations observed is a piece-wis linear equation. i.e. the p.,hse space i
,'u-nricallyp as well as the change in the pulse shape of divided in regions (regions 1, II and III in Fig. 1 1,,
"y fl-jon. Finally *m iqt-'odice a new porturbation wnicn Eq. I is liiear a... !ho u.repo'%Jirg solut;o,"
aCb.t'ach that gi.es a sirprisingly g:Od agreement with can be fouriJ by elementary analysis. Caution hatv' be
e. rrs,,It,, of ,umerical :cOmputations. take, to properly join the solutiaos at the bouiday uf

the different regions of the phiaso-ipacq. The proc ic.J'.
. r,.,,t address. Elettrotechnical Lathor,itory, 1--,, requiriq rather le.gthy cailculitions. has toe . ai, i10.
. i. ; r.a-mura, thlihari-guni. Itaral 375. ;span cut in Rvf. 4, using a traveling-wave asrumpioo ;r t-(

solution to Eq. I, vihic. is theii re.icv to a !hi.d
,er.i/ed te'pxtmher 3f,. 19et. order nrainary differential equation (OLE):

0018-9464/$7/300.i 11450.00OC 1987 IEEE
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f t-o) u s (3 0.2 04 06 0.8
where u is the velocity of the solution ahd -ut. 0

The solution in the three region% of Fig. I is given by 2 p.0 I

A,evp(qaf) 4 Ik (1) 4-02 095

.,exp(rafl)4&exp(rf).P:.xp~r,f) -41/k (II) 05,.025
.C.~evp~q~f) 4 C0eXp(qfi + 1: +f (111) -0.04

Cere A,, Cm, C-,, Bit 9j 8 are constants and q,, q,, 92

o and r, rag r-a ar* the roots of the characteristic OQ06 -
rolynOmiwm P! of Eq. 3 (the q's are related to P4 and

the r's to P,) 085

P! - Aux' - 4l-ugl~xe - aux 1 k a 0 (5) -008

Due to the form of P! we have, for P+, always a negative .1,5 2.
real root q, and for q,, and qa either two positive real 1 4 .2-

roots or a couple of complex conjugate roots with -010 -0 - t -

positive real part. For P- we 
have always a positive

root rv and for r, and rm either two negative roots or a 
Iog011

couple of complex conjugate ones with negative real Fig.3. Comparison of the A -u curves computed

part. analytically (solid curves) and the results £22 from

This information, together with the asymptotic numerical integration of Eq. I (marks) for various

conditions on the solution atf-+oa gives Eq. 4. The values of the parameters a and A.

-alues of the constants A%, B, Be, But Ca, Ca and 4Z are

oetermined by the matching conditions of f, *q and # the computed 4t-u curve with the results of a numerical

at the border of the regions in Fig. I (4). The main simulation of Eq. I is shown. In this calculation the

results of this approach are the following. The system value of k (Eq. 2) is chosen to be 8/u" after a

parameters for the observation of the overshoot in the comparison of the junction coupling energy per unit

flu,0in shape, (two complex conjugate roots in P4) Is length with that of Eq. 1. As shown in Fig. 3 the

ga1en by analytical results obtained are very close to the
,numerical ones for the original system.

4 ) 4a/27k (6) The numerical methods used in this paper were
simple and direct. An annular geometry was assumed. and

In presence of the overshoot, Fig. 2a, the period the simple finite difference equation corresponding to

of the oscillations and their decay rate can be computed Eq. I was solved. Usually an annulus of normalized

respectively from the Imaginary and the real part of the length eight was used, with a total of 400 finite

two compler conjugate roots qx and qn of P+. In Fig. 2a elements maling up the ring. The time step in the

the absolute value of fI is shown in a log scale; for simulations was uaully about 0.0/40v. Situations

both the period and the decay rate of the oscillations a with light damping needed smaller time steps; mea,,jer

surprising similarity with the numerical results of the, -damping could tolerate larger steps. All results -ere

integration of equation Eq. I, Fig. ab 2i2, is found. ; tested against variation with the spatial grad ad tare

The current-velocity relationship for the fluxon can be step. Initial conditions appropriate for creating a

deri'*d analytically C41 and in Fig. 3 a comparison of single soliton were approximated by a linear ramp in

to phase ev over the length of the junction, and tme
transients due to the relaxation to the true solitom
'ere allowed to decay before any measurements were made.

(2) The reproducibility of the results despite variations
in spatial grid and time step is the main reason for

confidence in the numerical results.

-& Phas. space analysis.

In this section we Shall develop a phase-space
analysis for the perturbed sire-Gordon equation Eq-

10-,{ I!.in order to investigate the effect of the surface iass

0 5 on fluion.

0 I As in the preceeding section we assume a tr..el -
wave solution to Eq. I on an infinite JTL with a

(b) velocity u. We obtain

-Af 4 (lItzC)f4 4Of - sin# * 1.0

4. To this third order ODE is associated a three-
/ dimensional phase-space it, which the fluuin sclut a,'

(2) represeitS a separatri,. an the sense that it c' ct.

tNou fixed points cf the pha.e-tpace i, 0 ,t :: ti- .

The fixod points involved a-e Oviously giaen b" P
(|,,f,(f -(arcsinj- rt . (. I,).

POSTION In the following a ;lnearized analysis of lte

q. '. r 3 line Qtapes. (al AnalytiCal results. b). d,namics around the fved pointc P will be per-fI el.

haff,!,-cal integration nif Eq. 1. The parameters are: Atsufiq a su;ution .f Eq. 6 qive,. t,

, 0''~11 , 0.01, V a 2/1. la-1I u - 0.14, I 0.079;
1p),. 0.569, (b-1) 0~* .1. (b-21 1- ".675. 4(f) - a vPt~~
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.e obtain to first ordor in ithe linear equation this symmetry by changing the slope% of the fluxon
- - edges, as has boon observed Ini numerical integrations.

-(au 9ff + (i-u')f * -u# 4' 0 (9) Lot us assume for simplicity that we have Only ooe
dissipative term In Eq. to namely the a term. Using

..ose solution is determined by the roots q of the the same procedure as shown above, wie obtain the
asm.ociatea polynmmmm characteristic polynomium in the farm:

P(Q) q2 - iz2 q0 mq + _ 0 (10) Ptqiun q2 + au/(l-ud) q - (I-..j)91a/(l.um) - 0 u4)
tu Pu?

This polynomlum Eq. 10 is similar to Eq. 4q, the roots of which are given by
P.'cept for the last term. and it will show the same
zoology of roots. The phase portrait near the fixed -ou2(lu 3)

point is shown in Figs. '.a.b. Figure 4&a corresponds (0/(te)(lla(u~S* (5
to the case of three real roots, that gives rise to a
sm'ooth fiuxon shape with no overshoot. In Fig. 4.b the In a neighborhood of the fixed points* the-solution
case 3f complex conjugate roots is considered and the f(f) will then be given by
iscillatinq behaviour of the overshoot is clearly
identified by the spiraling of the phiase-curve outwards if arrsinit. Aexp(-q,f')

frcm the fixed point. X2#4 rsnt ep-.f 2(16)

where #4 represents the leading edge of the fluxon and
9the trailing one.

From Eq. IS it is seen that wshen a is very small,
the two exponents art equal in magnitude, but when a is

X2 not small a difference in the magnitude of the expo-m.,ts
X, ~is found. This difference becomes more and more enthanced

as 4L tends to unity, reproducing the behaviour obSer'.eJ
in the numierical, Calculations. The same procedure that

X2 leads to Eq. 15 can be applied in the case 4-P 0.
however the calculations are more lengthy to carry out.

XI

a) b) !Ig.turbational fletho s.

Fig.'.. Phase portrait near the fixed points. (a) two lIn the previous section it has been shown that is

positive roots and one negative (b) one negative root possible to derive analytical results concerning the
ard t.o complex conjugate, influence of the dissipative terms on the fluxon

dynamics. Unfortunatel-1, the lack of knowledge about the

This kind of analysis cannot give the threshold for relationship between the bias current and the fluxon

-'e aouearance of the oscillating overshoot, as the one velocity (vL-u curve) limits the amount of information
in the first sectio, because the relationship between that is possible to obtain from such a procedure. Since
the bki% and the velocity u of the fluvon Is not known, the exact waveform of the fluxon In presence of bias a-d

l0..eVer It IS knumn (rom numerical integration that the dissipations is not known, various perturbative methods
velocity of the fluron will rapidly tend to unity when have been used to derive thefl-u curve. The classical

the bias is increased. Assuming a unit velocity in one (33 assumes the kink solution of the sine-Gordon

Eq. 10, one can derive an expression for the threshold equation as an approximation to the solutions of Eq. I.

for observinig overshoot iti the fluxon, in the same way i.e.
as in Eq. 8. The result is (t)*arglp jxu) 17

11 )f~e/(2(l -ti~ij Ill where Y, Is the Lorentz factor I(Lwli'd-u-l- ". Insertin'g

The validity of this condition is limited by the Eq. 17 into Eq. I and imposing a power balance

fact that Imust be consistent with a fluxon velocity between the energy output due to dissipationand the

ve~y close to unity. energy input due to the bias current, the followoing

Additional results can tie found by computing the expression for the Li-u curve is obtained C3J

(co,?olenl roots of Eq. 10 using standard methods; that IL-(!I
gives the djecay rate oa and the frequency (A of the Y,.~(./~ C + I (8

oscillations of the overshoot. In the case u - I and if
'A,'71(-L '~ I (which does not introduce major Although this expression represents the qualitative
rs~s~icion: w 1an obtain fairly simple expressions behavior of the fluxon as observed both experimentally

(f o and cij and in 'umerical simulations quite well, it fails to
describe the high velocity region. In fact. when u-+1

pa -5 11 -(12) Eq~. IS predicts that the bias goes to infinite. in
,~ilfC~idcontrast to numerical and experimental results.

r3,,- ,A1 ,)Rt./ (13) The problem lies in the form of the solution
I assumed in Eq. 17, which implies that the fluxon

We ha~e comoared the above results with the ones becomes more and more narrow as the velocity approacnes

ttaiPi v the numerical tintagratioti of Eq. 1 [2) and unitv. It has been observed numerically that when , - r
oztain a ery good agreetmenit (within 2-3%. the presence of a-dissipation determioei a lower lir&it

.- notthtvr interesting result that cank be obtancod by %i the fluzon contraction. Ferrigno and Pace (5) )a3

ITL' r. ?-tpace analysis regards the slope of the frur-d. ( A.(0 I similar results by using solutic-1 #c..t
ls4ji'rp m4d the trailing~ edge of the fluocn. - arcsini1 # 9,,(x,ti, where #,,(x.ti is given by Ea. 17

it it -il ino-n trat, in tte absencex of withi a different contraction factnr f,:
i~4'.i*,the slope% of tte le.Ading and the t~ailing

sq or rhe flu,cr. are elual, i.e. the pulse thape is -. ,Ci/(-uliQ
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it leads to a it-u relationship given by 11 - (4/w)p a previous sections, the effect of the A term is to
.edictimg that Il + and Y,4s/@ for u"l. Both the strongly deform the fluxon shape mal.itig the ansatz

pe-turbation approach in [31 and in E53 have their main Eq. 21 not valid anymore.
imitation in the fact that the perturbative terms (aof In the case 4<<1 the expression Eq. 19 for f can
S4-:.,.* 4I) in 1 and ( + qcos#+a# ) in E53 are still be considered a good approximation, supporting the
considered very small, while for f--)I this is not true. result obtained by the perturbative analysis.
mo,eover the presence of the A term distorts the shape We have checked the expression Eq. 2 with
of the flu'on considerably from the one assumed in numerical results from the integration of Eq. I
EQ. 14 making the ansatZ about the solution to Eq. I obtaining a much better agreement than for thr starbad
unrealistic. perturbation result Eq. 19. In Fig. 5 j-u curves

A possible way to handle the first of the two obtained from Eq. 22 are compared to numerical results
D obleS exposed can be to rewrite Eq. I as from [23 in the critical region of high bias and

velocity values. As expected a deviation is found -hen
..- *,,- sin4.'4- o'IN(L a f, o. (20) is not small compared to a and when the velocity of the

fluxon is close to I, i.e., when the overshoot is
1i'e left side of Eq. 20 has an exact solution C63 for prisent and the assumption Eq. 21 is not valid
any .alue of ': anymore.

As a final remark we note that Eq, 22 predicts avi
j(,,t) a 4arctg(exp( P(x-ut)l +arcin l (21) increase of the width of the fluxon when the 4 term is

present. In particular in the limit case n1 al and u-1
,.nere - , is given by Eq. 19 and *'=-j/2u2AI. Note the value of ' has a correction with respect to the
that typically a' << I even when q--) I. Inserting Eq. value found in ref. 5 for 40, that to the first order
1 irto Eq. 20 and imposing a power balance on the in , is given by
,erm% of the right side in Eq. 20 we obtain

Z u - P/4. (I - 1/(3(1 * 16*2/wE;))) (24)

Conclusion.
,, ic is the same as Eq. 18 but with a different
Ilu-on contraction term. It can easily be shown that We have developed a number of analytical methods to
tre ansatz Eq. 21 always leads to Eq. 22 for any choice istudy the effect of the surface impedance damping on the
of f. in the case 4-0 the expression for f (Eq. 19) can !fluxon motion in a 3TL.
be lerived by minimizing the power balance energy j A simple piecewise linear approximation of the siiNe
'Eq. 23 to be derived below) with respect to '. The Iterm in the perturbed sine-Gordon equation (PSGEI that
a,.er talance n-'rgf for a general contraction factor ' models JTL's allows to derive analytical solutions. It

can be computed from Eq. I by multiplying Eq. I with iis shown to be very accurate in describing the dynanic%
t_ integrating once with respect to time and of the original non-linear equations, especially with
integrating all over the space. To perform the regard to the effect of the surface damping term. A
,ntelration we have assumed the form Eq. 21 for # with phase-space analysis of the PSGE in the travelling wave
(a' an independent parameter and the power balance assumption is able to predict quantitativel' the
,elation Eq. 22. As a result the power balance energy is 'dynamical effects of the surface damping in te-es of the
cbtained frequency and decay rate of the oscillations connected

'With the overshoot in the fluxon shape and the asyeretry
E Ta 4(1 I uni I =1~ -uA (23) in the fluyon shape. Finally, a new perturbative schemo

based on the solution of PSGE with quadratic damping is
.-.e-e u is given by Eq, 22. derived, leading to a generalization of eirlier results,

In the case 11¢, the minimizing procedure cannot be obtaiied in absence of surface damping.
applied because, as it has been discussed in the
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llrcather dynamics in the sine-Gordon system with changing sine term coefficient is investigated. It is shown that for

adiabatic changes the frequency of the breather in rcscaled ime is constant while the vclocity changes just as1 thc velocity of a
kink.

1. Introduction Here O(x, r) is the field variable, i.e. the macro-

Durng he astyeas agret dal f iterst scopic phase difference across the junction,
Durig te pst yarsa geatdealof nteest a(x, z)sin(o) represents a nondissipative pcr-

has been devoted to the study of soliton dynamics turbation with a a slowly changing function of
in various physical systems [1]. One of thc systems space and time, and m(x, I) is thc instantaneous

whecrc soliton propagation is more accessible to 21r-kink mass.
experimental mcasurements is the long Josephson In a previous paper [4] the effects of such a
junction [2]. In this case the dynamics is governed perturbation on a 2n'-kink motion were investi-
by the sine-Gordon equation and soliton's gated by assumning an adiabatic "switch oni" of the
(fluxon's) resonant motion manifests itself with perturbation. The analysis was performed without

*the presence of dc singularities in the current- the nced of perturbation theory, by using the

*vol tage characteristic of the junction [2, 3]. In this conservation laws of system (1). The results were
context several physical situations such as smooth also found in good agreement with numerical cx-

Ispatial modulation of the Josephson supercurrent, periments.
islow temperature drift of the junction, etc... are In the present paper we will continue this analy-

modclled. (neglecting dissipation and bias), by the sis by investigating the effects of the same per-
following simple perturbed sine-Gordon. equation turbation on the other solion solution of the

in normalized form sine-Gordon equation: the breather. A breather is

-oft- (I + c(x. ))sin(p) a bound state of a soliton and an anti-sollion that

)2Sin,(1) is described by two parameters: the velocity with
sin,) I which the whole structure moves and the internal

frequency of oscillation [5]. This will require -,he

AknG NS.. zinc i aleno.1.410 Slero.Itay, use of two conservation laws of eq. (2) to dc-

*Permanent addrc~s: Physics3 Laboratory 1. The Tcchnical tcrmine the perturbed breather dynamnics. In see-
*University of Denmark. Dk.2800 Lyngby. Denmark. tion 2, by using the energy and the momentum o,

*0167-2789/87/03.50 0 Elsevier Science Publishers 13.V.
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eq. (1) we compute the rate of change of the while the velocity exactly follows the same changes
internal frequency and of the velocity of a sine- as those found in rf. 4 for a 2ir-kink. In section 3
(rdon breather under the influence of pcrturba- the adiabatically "switching" process is numeri-
tions of type asin (0) with a either a function of cally simulated for the a(/)sin(o) kind of per-
space or of time. In the analysis we will assume an turbation. The comparison between numerical and
adiabatic switch on of the perturbation, this avoid- analitical results confirms the validity of our sim-
ing the creation of background radiation into the pie approach. Finally in section 4 we estimate the
svstcm. As a result we find that the internal limits of validity of the adiabatic assumption and
frequency in "rescaled" coordinate is constant summarize the main results of the paper.

2. knalysis

Let us start by defining the energy H(() and the momentum P(t) for eq. (1) as

f , + a)(1 -cos(-P))dx, (2)

P - - ,dx (3)

.Ind by considering their time derivatives. With the help of eq. (1) we get

d 11 3C a, (I - cos((P)) dx, (4)

d - a,(I - cos( ))dx, (5)

Frorn which it is clear that when a, = 0 (i.e. a _= a(x)) the energy is conserved [4, 61, while when a, = 0 (i.e.
(I n- (t)) the momentum is conserved [41. In the adiabatic case with a spatial localized entity, the
derivative of a in eqs. (4), (5) can be taken outside the integrals and one is left with the spatial integral of
( I - cos(,)) in both equations. (For a 21T-kink these equations provide the same informations.) In order to
tind the rate of change of the breather frequency it is convenient to introduce the rescaled spatial and time
%ariahles z, T,

d:=( +a) /2dx, d r=(1 + a)1/2 d, (6)

in terms of which eq. (1) is rewritten as

a In(m) a In(m) (7)
dz ' (7

hcrc the last two terms represent perturbations to the pure sine-Gordon equation. Eq. (6) shows that the
,u.ty is the same in the original and in the resealed variables

dz dxd=i d7" (X)

I', D Lbi ,,
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while the re-scaled frequency w' is related to the original frequency W by

,= = (l + d =(1 + ,)-/2, (9)

For adiabatic changes of the mass m the instantaneous breather solution of eq. (7) is written as

{ F(o')-'sin[W'r(v)(-vz) + (Po] a
p= tan-' 'cosh ['(W)-'r'(v)(z- V)I j (loa)

{r(,') -'1sin I[W'Tr( V -'I . ) V( z- vr) + (Do]
= 4tan-1(10b)

W'cosh Ir( w')-'(v)(z -VT)

where

Inserting eq. (10) into eq. (2) and using eq. (6) we get for the energy

U 1=16(1 -a)"2 F(w'y'r() = 2mF(w')-'r(v). (12)

Similarly, from eq. (3) we get for the momentum

ILI P = 16(1 + a)" 2 1'(')-'F(v)v = 2m(w') -'r(v)v. (13)

In order to use cqs. (4), (5) we have to perform the spatial integral of (1 - cos(o)). Since the changes are

adiabatic the breather parameters v and w' will change very little during one period of oscillation.
Therefore we can first take the time average of (I - cos(O)) and then do the spatial integration. With the

use of cqs. (10) and (6), after some lengthy calculations we get

-' ~ 1 7 ': ,' -

T d (14)7 ~f d 00' (+csC,)x r C+,),/!.

'i From eqs. (4) and (5) together with eqs. (12), (13), (14) we have

- d( H ' - P2 ) = 128(1- +'2 )(a +va) "  (15)

Ohbserving that

i= , 4-va, (16)

cq, (15) implies

d (17)
de

C
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independently of how the change of a(x, t) is made, the only requirement being its adiabaticity. the
frequency parameter in the rescaled time w' is constant. The frequency w in the original time is then easily
obtained from eq. (9).

To compute the rate of change of the breather's velocity we observe that since w' is constant there is no
substantial difference between the breather problem analized here and the 21r-kink problem analized in ref.
4. We have only to replace F(') - ' by I in eqs. (12), (13), (14) and take over the results from ref. 4. These
results depend on a(x. t) and on the initial velocity. Here we consider only the cases a., = 0 and a, = 0.

( Y, = 0. In this case the momentum P is a conserved quantity. Thus from eqs. (5). (13), (17) it follows

(in - initial)

(I + a)t/"f(v) = constant = Vi.F(uiJ), (18)

this giving for the breather velocity

f. I + A (I - V2 ) ],/,. (19)

Ca.e a, = 0. In this case the energy is the conserved quantity (see eq. (4)), this implying (eqs. (12), (17))

(I + a)'/ 2r(v) = constant = F(vin), (20)

from ich it follows that

in i. (21)

In the next section we will compare the results referring to the a.,= 0 type of perturbation with those
ohtained by a direct numerical integration of system (1).

3. Numerical experiment be implemented on a finite length model and does
not give a deeper understanding of the system.

We have integrated numerically eq. (1) assum- Each numerical integration has been carried out in
ing periodic boundary conditions over a normal- the following way: a) The initial condition is set in
)/d length L = 40. This value has been chosen in the form of a "pure" sine-Gordon breather and a
,,rder to avoid interferences between the tails of is set to zero; b) a is changed (increased or
the breathcr-like solution during the time evolu- decreased) at a constant rate and the frequency
tion of the system. The numeijcal algorithm is and the velocity of the solution are measured at
hacd on an explicit finite difference scheme de- each oscillation period of the solution itself. A
riCel h-,' Ahlowitz et al. [71 that, with a choice of value of the rate of change of a of 10-' has been
the ,patial and temporal step size of 0.1 ensures chosen in such a way that it ensures us that no
,,tihihtv and accuracy of the calculation [8]. spurious dynamical effects, like phonon creation,

In all numerical experiments we have restricted are generated.
,urselkes to the case a = a(t) since the other one The most interesting part of the numerical pro-
(- ' t ) requires a much more complex code to cedure is the way that both the velocity and the
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frequency of the solution are measured. The prob-

",m lays in the fact that a moving breather does
not have a constant profile, but oscillates in an a

un-harmonic way.
The program locates the maximum M., of the

""1 solution and its x coordinate at each time step,
using a parabolic interpolation between adjacent
spatial grid points. ., evolves in time in an
oscillatory way. reaching a maximum value M-, 0.0 -. 01.

.once pcr period of oscillation of the solution. ,,
i.,, evaluated together with the corresponding time 0
value, again using a parabolic interpolation be- b 1.O-

tween adjacent time points. Once that the posi-
tions X0 and x, and the two corresponding times
i,, and t, of the two consecutive maximums M,,
arc known. then the velocity and the frequency of

t the solution arc calculated as
iI ~ (.x , - .t,,) - I.

'and (22) -1.0 0.0i (,,1 t,, (, - to) "
Fig. 1. a) Frequency w of the breather as function of a - a(rJ

1?j In eq. (9) we have given the conncction between for different starting frequency values. The dashed curves are
the theoretical predictions (cqs. (9). (17)) and the full curves

the original frequency w and the rescaled frequency are the numerical results. (When the dashed curves arc not

w'. From eq. (10a) we see that the rescaled visible they coincide with the full ones.) The initial velocity is

frequency w measured at a given point is set to zero and the line length is L - 20. b) Same as in fig. Ia
but with an initial velocity of 0.5 and line length L - 40.

= ,"'f(V) (23)
changes are computed, both from an increase of a

and from eq. (10b) that the rescaled frequency w2 up to a = I and for a decrease of a down to
measured in the frame moving with the breather a= - 1. A comparison of the numerical results
(:U=T)is (full curves) with the prediction of eqs. (9), (17)

(dashed curves) shows that an excellent agreement
=-.-'['(u)-

t  (24) is reached, except for the region where the

breather-like solution becomes so wide that the

These relativistic effects are important when corn- influence of the periodic boundary conditions can-

paring to numerical experiments. Indeed, the not be neglected (in this case the spatial length

method we have used to compute the solution was 20). In fig. lb a similar comparison is shown.
frequency corresponds to a measurement in the corresponding this time to a moving breather with

original time, so in order to compute the corre- an initial velocity v = 0.5. Again a very good

sponding value of the parameter w' in eq. (17), eq. agreement is reached, apart from a region where

(23) must be used. The results of the numerical the same considerations made before apply (this

integration are shown in figs. 1 and 2. In. fig. la time the spatial length is 40). Once that it has been

the case of a resting breather (v = 0) is analyzed. shown that the change of the frequency w with a

The initial values of the frequencies w are varied does not depend on the initial velocity of the

from 0.1 to 0.9 and the corresponding frequency breather, as predicted by eq. (17). a number of
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vi

.0_ 0.8 _

_______________ 
V

0.6-

- - - -0 4 I I I ..I I I

0.01 0.10 100 s- 10 O00I
Fig. 3. Dependence of the change of u and w on the rate of

Fig 2. Velocity v of the breather as function a -a(t) for changes of a(t) (see eq. (25)). The initial frequcncy and
difrent setting of initial velocities. The initial frequency is 0.5. velocity are both set to 0.5, and a is changed according to cq.
The dashed curves are the theoretical predictions (eq. (19)) (25) (A - 1, TF - (20.4/s) + 100). The final frequency and
% hile the full ones are the numerical results. (When the dashed velocity are plotted as functions of s. The dashed lines corre-
t.urve. are not visible they coincide with the full ones.) spond to the theoretical predictions in the adiabatic approxi-

mations (cqs. (9). (19)).

integrations with a fixed iritial frequency w = 0.5
and with iniial velocities ranging from 0.1 to 0.9 The results are summarized in fig. 3 where the

have been performed. The results are plotted in final values of w and v are reported as function of

fig 2 where the velocity of the solution is plotted s (o,. - 0.5, vi. - 0.5, A = 1) and T F is adjusted
as a function of a both for an increase of a up to in order to give a(TF) a 0.99A. The figure shows
a = I and for a decrease down to a = - 1. Again a that up to a value of s = 0.1, corresponding to a

very good agreement is found, except for the time of change of a comparable with the oscil-

points lying in the previously discussed region, lation period of the breather, there is no apprecia-
verifying the results (eq. (19)) obtained from our ble deviation of the numerical results from the

analysis. theoretical predictions based on the adiabatic as-
sumption.
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Stability of the McCumber curve for long Josephson tunnel junctions

0. Costabile, S. Pagano,* and R. D. Parmentier
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The stability of the McCumber solution of the perturbed sine-Gordon equation that describes
the dynamics of a long Josephson junction may conveniently be studied within the context or a
Fourier-Galerkin approximation. In the absence of an externally applied magnetic field, this pro-
cedure predicts analytically how the number, locations, and widths of the unstable regions of the
McCumber curve depend on the junction parameters. These instabilities are of physical interest
because they evolve into the fluxon oscillations associated with zero-field steps. In the presence of
a small applied magnetic field, the same procedure provides a technique for studying Fiske steps.

I INTRODUCTION The application of an external magnetic field provides

a mixing mechanism between the various mode equa-
The determination of instability regions associated tions, thus rendering the analysis less tractable. For a

with the McCumber curve in the current-voltage (1-V) sufficiently small field, however, we can once again
characteristics of long, narrow (hysteretic) Josephson linearize the higher-order mode equations. In this ap-
tunnel junctions has attracted research interest because proximation, the essential effect of the field is simply to
the existence of such instability regions is directly con- add an inhomogeneous driving term to the odd-order
nected with the experimental observation of zero-field mode equations. This term is responsible for the appear-
,tops (ZFS's) in the I-V characteristics of such junctions. ance of (odd-order) Fiske steps (FS's) in the I-V charac-
This connection was first pointed out in 1973 by Fulton teristic of the junction.
lnd Dynes, i on the basis of observations on a mechani-
cal analog of the long Josephson junction. Later, the IL MATHEMATICAL MODEL
problem was studied analytically by Burkov and Lifsic.2  The mathematica model of the overlap-geomtry
More recently, Pagano et al.3 have considered the prob-
lem in some detail, reporting analytical, numerical, and Josephson junction is, in normalized form, the perturbed
cpcrimental results. Briefly, the picture that emerges sine-Gordon equation 4

from these studies is as follows: To observe ZFS's exper- 0,. -0, - sin- - , (a)
imentally, one raises the bias current applied to the june-
lion from zero up to the critical value, whereupon the .,(O,t)=0,(L,t)=i . (ib)
junction switches from the zero-voltage state to the gap
state. The bias current is then reduced to some nonzero Here, O(x,t) is the usual Josephson phase variable, x is
.alue; during this phase the McCumber curve in the I-V distance along the junction normalized to the Josephson
plane is traced out. Raising the current again then al- penetration length, and I is time normalized to the in-
lows tracing out the ZFS's. verse of the Josephson plasma angular frequency. The

This situation may be understood theoretically by per- model contains five parameters: a, /3, y, L, and 71. The
forming a stability analysis of the particular solution, term in a represents shunt loss due to quasiparticle tu-
corresponding to the McCumber curve, of the perturbed neling (assumed Ohmic), the term in 13 represents dissi-

ite-Gordon equation that describes the dynamics of the pation due to the surface resistance of the superconduct-
junction. The simplest case is that in which there is no ing films, y is the spatially uniform bias current normal-
external magnetic field applied to the junction. In this ized to the maximum zero-voltage Josephson current, L
case it is particularly convenient to perform a mul- is the normalized junction length, and 71 is the normal-
timode, i.e., Fourier-Galerkin, decomposition of the ized external magnetic field, applied in the plane of the
model equation since the McCumber solution corre- junction and perpendicular to its long dimension. In rce-
si, ,|N Lu e,.Liailu, i " , the zero-order mode. The cent years this model has been shown to describe a wide
stability of this solution is governed by the higher-order range of experimentally observed Josephson phenomena,
mode equations, which, in the linear approximation, often to a surprising level of detail.
reduce to a set of uncoupled, damped LamE equations, A number of approaches have been employed in the
for which exact, analytic solutions have been found, literature to solve Eqs. (1). One of these, which has been
Such Lame equations exhibit parametrica!!y excited un- found convenient in particular for the study of periodic
stable solutions in some regions of their parameter space; limit cycle behavior, is the Fourier-Galerkin appro(xin .-
these instabilities evolve with time into the fluxon oscil- tion, i.e., projection onto a truncated series of Fourier
lations associated with the ZFS's. spatial modes whose amplitudes are unknown function1s

36 5225 ( 1987 The American Physical Society
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of time. To illustrate this approach we consider first the where K(k) and E(k) are, respectively, the complete el-
casc of homogeneous boundary conditions, i.e., 7=0 in liptic integrals of first and second kinds.5

Eq. I h). We take as a solution ansatz the form To study the stability of this solution we suppose now

V that the m(t), m 1,2,.. ., N, are all small but nonzero.
05X.t 0 1. 6j Mcos(jirx/ L) , (2) Defining

1=0 N

"hcrc .\ is some finite number. The choice of this form - ,j(t)cos(jrx/L) , (7)
ste ns from considering, at any instant of time, a
reflection of the function O(x,t) in the interval x =0 to L we expand sino to linear terms as
onto the interval x =0 to -L in such a way as to con- sino= sin(oo+E)= sinoo+eco0so . (8)
truct a periodic, continuous, smooth, even function

%ith spatial periodicity 2L. In the limit N-oo the rep- Inserting Eq. (8) into Eqs. (3), and utilizing once again
r'2,entalion of Eq. (2) is exact; the practical usefulness of the orthogonality of the cosines, we obtain
this approach depends upon being able to obtain a
1reasonable" description of the system behavior using a +a 0 7 sino, (9a)
relatively small value of N. ', +(a+lo? ),, +W , = -m cosb 0 ,

Iserting Eq. (2) into Eqs. (I), and using the ortho-

gotialit properties of the trigonometric functions, we in =1,2,.. ., N. (9b)
obtain the following set of ordinary differential equations The equation for 0o, Eq. (9a), is exactly the same as in
for the mode amplitudes Oj(t): the unperturbed case, Eq. (4). Equations (9b) represent a

L f singbdx , (3a) set of N uncoupled, linear, parametrically excited oscilla-I =0 tors in which the 00 term is the parametric driver. Since
.(,, .- a~fl 413,,,,+ , these equations are uncoupled, they may be solved in-

dependently, which greatly simplifies the analysis.
-(2/L) = 0__ sin cos(mirx/L)dx (3b) Inserting the expression of Eq. (5) for 4'o into the gen-

re = 1,2,. .. ,N eric member of Eqs. (9b), we obLain explicitly, for the
nth mode, the equation

II which =-,, = rr/L, and qS is given by Eq. (2), and
to crdots denote derivatives with respect to t. ', + (a+w2 )$,, + aw, 2 1--2 sn2(t/k ;k)J], =0, (10)

where sn is the Jacobian elliptic sine function of
Ill. NicCUMiiBER STABILITY ANALYSIS modulus k. Defining the new time variable, r=t/k, we

transform Eq. (10) into
A McCumber solution of Eqs. (1) is one without spa- 2 *k(t+w ) I,+[k2 w +l-2ksn 2(;k)]6,=O

tial structure; in terms of the elastically coupled +

pendu lum-chain analog of the sine-Gordon system it has (11)
all of the pendula rotating in synchronism "over the
top. (i term otEqs.n(3 it synchonis m ee ent b where overdots now denote derivatives with respect to r.configuration having 0 0  and iip(t)--0, m We may eliminate the first derivative term in Eq. (11) by

= 12 ..N. In this situation Eq. (3a) becomes means of the standard transformation

-ao 0y -sin4'o ,(4) ,,(r)=y(r)exp[-{k(a+ao)r] , (12)

and all of Eqs. (3b) become identically zero. In the ab- under which Eq. (11) becomes
sence of loss and bias (a=y=O), the rotating solution of
Eq. (4) is exactly Y+Ik 2[2+ l-- (a +)3(,) 2 ]-2ksn2 (?r;k)Iy= 0

,5,,t =2 am(t/k ;k) , (5) (13)

\hcre am is the Jacobian elliptic amplitude function5 of Equation (13) is Lam6's equation. A detailed discussion
niodulus k, with 0<k < 1. For nonzero a and y we as- of the exact analytic solution of this equation (in some-
,imic that Eq. (5) solves Eq. (4) in the power-balance ap- what more generalized form) may be found in Whittaker
pro\ima loln. I.e., we equate the average power furnished and Watson 6 (who attribute the original solution to lec-
. Ihlie hilis supply, P,n ='(0o), to the average powei ture notes of Hermite dating from 1872). Following

di,,ipatcd. P,,,, =a(42), where angular brackets denote their discussion, we find two linearly independent solu-
, limc-aeraged value. Carrying out this operation tions of Eq. (13) to be
.tl,.liet' following expressions for the McCumber y(r)=[H(r-r0 )/O(r)]exp[±Z(rOI, (14a)

1,r;n cl of h I- V characteristic of the junction:

y_(,)=[H(+ro)/O(r)]exp[-Z(rn)I] , (14b)4ur';t k /:7",, , 6a)
where H, 0, and Z are, respectively, the eta, theta, and

, k/K(k) (6b) zeta functions of Jacobi,5 provided the constant 7,,
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satisfies the equation corresponds to k =1. For k =1, both sn(r 0 ;k) and
Z(ro) reduce to tanh(r 0 ),' so that, from Eqs. (16) and

on2 (ro;k )ds2( ro;k )-ns2(ro;k) (17), the condition for 6( V =0)=0 is

=- 2 k2[o 2 -+- 1-(a +-o)w )2 ] , (15) [ 1 _ +.g(a.2 )2
11/2 _+3 ,4 n -(a +/,62,I 8

where cn, ds, and ns are Jacobian elliptic functions i.e., L/n =ir. For L/n > rr, we have 6( V =0)> 0, which
Using various identities amongst these functions, 5 we implies instability. From these facts one might be

may simplify Eq. (15) to ipisisaiiy rmteefcsoemgtb
tempted to infer that for all L In > ir the instability re-

sn2ru; k) =I/k 2 -_6) + L(a +)3a,, )1 .(16) gion in voltage extends from some maximum value, say
nk lo V,,1, down to V=0. Numerical calculations show this to

The nature of the functions in Eqs. (14) depends on be almost, but not quite, correct: For Lin very slightly
the value assumed by the right-hand side of Eq. (16). greater than ir, the instability region may consist of tw o
We may a priori distinguish four possible cases, disjoint pieces separated by a region of stability. For ex-

Case 1: 0< l/k 2 -( 2 + -(a+ /3)0 2 )2< 1. Using vari- ample, for a=0.05, /3=0.02, and L/n=3.142. the
ous results from Ref. 5, we may establish that ro is real, McCumber curve is unstable from V =0 to 0.287 and
0< r0 K(k), H/0 is real and periodic, and Z(r 0 )>0. from V=0.589 to 2.31); but already for L/n =3. 143 the
Hence, from Eqs. (14) and (12), the stability boundaries intermediate stable region becomes unstable, and the in-
of Eq. (11) are given by stability region extends smoothly down to V =0.

Another consequence of this theory is that instability
6=Z(ro)-+k(a+0oah=0 . (17) regions corresponding to the same value of a, /3, and L,

6< 0 implies stability; 6>0 implies instability, but different n, can overlap. This situation is illustrated
Case 2: We y < ea in Fig. 1, which shows the instability regions fors :1 + - 'L(a+ )2<0.We may estab- a=0.05,/3=0.02 and n = 1,2,3, as a function of L. For

lish that 1-0 is pure imaginary, Z(r o ) is pure imaginary, different values of a and /3 the form of the instability re-
and H/ is complex, but periodic. Hence, Re(5) gions remains quite similar to that shown, the major
= -4-k (a+/3o, )<0, which implies stability, difference being that the "peak points," i.e., the point,,

Case 3: 1 < I -A +•-L(a+ I /k We may where the width of a region goes to zero, move to higher
establish that r0 is complex, Re(ro)=K(k), Z(ro) is pure voltages for smaller a and/or /3. The numbers in
imaginary, and H/ is complex, but periodic. Hence, as parentheses in Fig. I indicate which McCumber regions
in case 2, Re(6)= -. Tk(at+/n 2<0, which implies sta- are unstable in the various zones of the V-L plane. The
bility. existence of overlapping instability regions might imply

Case 4: 1 2 < 1/k -o + c(a +/3(2w )2 < 00, i.e., the existence of a switching mechanism between different
a + 3ow2 > 2co,. We may establish that r0 is complex, ZFS's, but a verification of this hypothesis lies beyond
lIm(i ) =K (k'), where k' is the complementary modulus, the scope of a linear stability theory. In any case, the
and 11/0 is complex, but periodic; however, the nature above two observations suggest a simple explanation for
of Z ( ro ) is not (at least to us) completely clear. Howev- the frequently observed experimental fact that it is often
er, we note that for "physically reasonable" parameters difficult to bias on low-order ZFS's in longer junctions:
case 4 is unlikely: e.g., with a=0.05 and /3=0.02, case If the low-order instability regions overlap, and if the
4 is obtained only if LIn <0.0314 or if L/n > 126, lowest region or regions extend down to V =0, then it
where L is the normalized junction length and n is the seems not unlikely that in descending along the
order of the ZFS.

Consequently, in practice, the only physically relevant 6 - I ,
situation is case 1. The computational procedure in- n=1 2 3
volves fixing the parameters a, /3, L, and n, and iterating
Eqs. (16) and (17) until a value of k is found which gives
5=0. The stability boundaries in current and voltage W(D4-
are then found by inserting this value of k into Eqs. (6). <
The necessary calculations may be carried out readily 0
using a programmable pocket calculator. >

As a check on this theory we have compared our NO
present results with those obtained by Pagano et al.3 by 2
means of a perturbation expansion of Eqs. (9b) in the (2 *3)

high-voltage region of the McCumber curve. We have .
also compared our results with those obtained by a (1 .2) (1 2.3)
direct numerical implementation of Floquet theory. 7  0 -

Agreement was found in all cases. 0 2 4 6 8 10 i2
LENGTH

IV. SOME PARTICULAR RESULTS
FIG. 1. Junction-length dependence of instahilti .

Suppose we wish to establish a stability boundary at for a=0.05 and 13=0.02. Numbers in parenihc,, it ,._!"
1 , ie., we i mpose ,5( V =0)=0. From Eq. (6b), V =0 which McCumber regions are unsiahle.
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McCumher curve one might switch directly to the zero- separation of the junction dynamics into independent os-
oltgc stale, skipping over the intervening ZFS's. cillators, as in the discussion leading up to Eqs. (9).

\ linear stability analysis can provide estimates of the Consequently, in order to make some analytical pro-
.,lality boundarics along the McCumber curve, but it gress, we now assume that 71L << 1, and we assume that
cannot furnish the time evolution of an unstable solu- this implies that E in Eq. (7) is small. Expanding sin6 to
lilo This question was addressed in Ref. 3, where it linear terms in small quantities, we may write Eqs. (3) as
A,, shown by direct numerical integration of Eqs. (3)

ho%% such an unstable solution evolves into the fluxon os- $o+a 4=r- sin($ 0+ nL/2), (21a) 

,illationi associated with a ZFS. The existence of such a $,, +(a +Oto,, ),, +((a2 + cos460),,
d.nanic route is also suggested by the following analytic M
argument: Suppose in Eqs. (3) that only one spatial =(4"qL/m ir2 )P,,, cosd 0 , (21b)
mode, say the nth, is excited, but that its amplitude is where m =1,2,.. .,N, and P (0,1) for m (even, odd).
not restricted to be small. In this case Eqs. (3) can be With the substitution ,= 0 ± 1L/2, Eq. (2a) be-wvritttn explicitly as Wt h usiuin$=0rL2 q 2a e

comes identical to Eq. (9a). Equations (21b) differ from
,"+a 0 -=y -Jlih,, )sin6o, (19a) Eqs. (9b) only by the presence of the inhomogeneous

driving term (417L/m 2 r2 )P, cos6 0 , which is present
s,, 4-(a+flc )d,, +,b,, = -2dJ(,,)cos~o , (19b) only for odd m. Since Eqs. (21b) are, by construction,

%%herc J,, and J, are Bessel functions of the first kind. once again linear, their total soiution is just the sum of
V .oh the assumption that 0o=wt, with o constant, Eq. the homogeneous solution, i.e., that found in Sec. III
, VI 1 becomes just the equation derived by Takanaka8 to above, plus a particular integral. The homogeneous
,,Iid% the I-V profile of ZFS's. In fact, all of Takana ka's solution shows exponential growth when the dominant
re,,ihi are reproduced by applying the Krylov- frequency of cos0 is approximately 2(,,, (for any m).

IBoeolitibov approximation procedure9 to Eqs. (19). Outside of the instability regions the homogeneous solu-
Similarly, a two-mode approximation to Eqs. (3), iogeth- tion tends asymptotically to zern. The particular in-

cr with the Krylov-Bogoliubov procedure, gives rise to tegral, on the other hand, is essentially a resonance hay-
theic rtulis of Chang et al, '( and an N-mode approxima- ing a peak response when the dominant frequency of

lion I those of Enpuku et al.1I cosd'0 is approximately a) (for odd m). Thus, in the
context of the linear approximation, the appearance of

V. MAGNETIC FIELD EFFECTS ZFS's may be attributed to a parametrically excited reso-
nance of the multimode equations, whereas the appear-

In the presence of an external magnetic field, 7#*0 in ance of the odd-order FS's derives from a directly excit-
I lb. the solution ansatz of Eq. (2) is no longer ap- ed resonance of these equations. A complete analysis of
pr,,prrate since it does not satisfy the boundary condi- magnetic field effects, and in particular an analysis of the
Mtons. The expedient normally employed in this situation even-order FS's, requires going beyond the linear ap-
i,, to replace Eq. (2) by an ansatz of the form proximation. This may be effected by perturbation

Nv theory, as in Ref. 3, or else by a direct numerical in-

I)x, l=f(x)+ 2, 05(t)cos(jirx/L) , (20) tegration of Eqs. (3), in either case using the ansatz of

j=0 Eq. (20) for $.

where f(x) is some function that satisfies Eq. (lb).
Sc'.eral different such ansitze have been used by various VI. CONCLUSIONS
.ini hor: Enpuku et al.1 use f(x)=lx. Watanabe and
lh:11 use the procedure, due to Olsen and Samuelsen, 1  The linear stability analysis described above provides a
1,f choosing an f(x) that corresponds to two static virtu- simple explanation for a number of frequently observed
Ai flii\'oinS placed outside the two ends of the junction. experimental facts, e.g., the fact that it is often difficult
lKa%' riolo 1'.

1 5 us es, respectively, in the two papers cit- to bias on low-order ZFS's in longer junctions. More-
a& %i static fluxon lattice array and a static fluxon- over, it underscores the fact, first suggested by Chang et

.itiilli~on array for f(x). al., 0 that both ZFS's and FS's might be described within
Flhe basic mathematical requirement on f(x) is that it the context of a single, unified model. It should be not-

must satisfy Eq. (lb). In addition, a "good" choice for ed, however, that this analysis applies only to the mech-
!' x presumably should be computationally simple and anism of switching from the McCumber curve. There
' hiouii lead to a relatively rapid convergence of the trun- presumably exist also other mechanisms for biasing on
:;iftctd Fourier series in Eq. (20). Since we are not aware steps (both ZFS's and FS's); the study of these will
,,I how to guarantee a priori this second condition, we presumably require other tools.
,diill. in what follows, use the Enpuku et al.'' ansatz,
/'I, - ix. because of its simplicity. This choice [with ACKNOWLEDGMENTS
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Chaotic Behaviour of a Pendulum with Variable Length.

K. ]3AITUCCELLI (*), P. L. CIISTIANSEN, V. MUTO andi M. P. 8oErWN8EN,

Laboratory of A 1~plied Julat hemtical I-h1ysics
The Technicul Unireroily of Denmark, DK-2800 Lyngby, Deinark

N. F. PEDErimioN

P'hysics Laboratory I
The Technical University of Detamrk, DK-2800 Ly-ngby, Deumark

(ricevuto ii 24 Giugno 1087)

Summary. - The Mulnikov funcetion for tho predictiou of Snialo lioraeshoo
chaos is applied to a drivoti daizaped pendulum with variable longth.
Depending oni theo paramecters, it A showni that this (lyniatiical system
unhlortakos hotorocliie bifurcatimns which are the sourco of the unstablo
chaotic motion. Tho anialytical results are illustratod by niow numeorical
sijiulataous. Furthermtore, usinig the averaginig thteoremn, the stability
of tho subliarinonics is studied.

PACS. 05.45. - Theory anid mnodels of chaotic systems.
1PACS. 43.40.Ga - Nonliear vibration.

1. - Introduction.

In this paper wve investigate the hiAcrodlinic and subliarmonic bifurcatioins
of a pendulum with variable length using the so-called Mclnikov mothod (1).

Tis, method is a global perturbation theory which is able to analytically
predict the occurrence of homoclinie (hoteroclinic) and subliarnionic bifurca-

(') Prosenit addrosa: Mlathemiatics Dopartmneut, Queeni Mary Collego UlziversiLy of
Londoii, M1ile End Rtoad, Loudon, El 4NS, Eiiglaiid.

()V. K. MILNIKOV: Trans. Moscow Math. Soc., 12, 1 (1903).

*22'j



230 M. IIARTUCCELL1, P'. L. CHIRSTIANSEN, V. MUTO ETC.

tiO18whe smeparameters of the system aevaried. Further, tgvssf
ficient conditions for the occurrenco of transversal intersection between the
stable and unstable branches of the homoclinic (hoeroclinic) orbits. Whei;

Ruch a transversal intersection occurs, it can be shown, using the Birkhoff-

Sinale theorem. (2), that the set of nonwandering points (2) contains an invariant
Cantor set; moreover, some iterate of the Poincar6 map restricted to this Cantor
set is equivalent to a shift oii two symbols (i.e. a horseshoe) (2) . This invariant
hyperbolic Cantor set is structurally stable, this guarantees that we can

perturb it slightly without destroying it. However, it is important to realize

that this invariant set is not an attractor. This means that the existence of
* hornoclinic (hieteroclinic) points does not imply stable chaotic behaviour. Never-

the~less, it is quite difficult to predict the asymptotic behaviour of an orbit
becautse the stable manifold behaves like an uncountable set of s;addle sep-
%ratrices, i.e. two orbits starting on different sides of the stable manifold will
ultimately separate exponentially fast (this is equivalent to saying o sensitive
dependence upon initial conditionsp), i.e. chaos).

Also the occurrence of the so-called homoclinic (heterodlinic) tangenciesI -. n lisipative systems is very important. Works of Newhouse (3-1) and
Gavrilov-Silnikov (01.7) indicate that there are infinite sets of o stable * periodic

orbits of arbitrarily long periods. These orbits are created through saddle-
pi .0node bifurcations and throughout the bifurcations they double their periods

* ~ repeatedly. Such bifureations can be expected to occur within chaotic regimes.

* Moreover, we can expect an infinite number of periodic sinks for p.ramete
values near the homoclinic tan gencies. Several examples exist of systems for

which homoclinic tangencies occur (1). Thus we expect this wild behaviour to

be found in many other systems.
- 14.1The paper is organized as follows: Sect. 2 describes the physical model.

Section 3 contains the heteroclinic Melunikov function. Section 4 deals with

$ ~' he subhiarmonic.3Melnikov functions. In sect. 5 the stability of the subharmonic
solutions is discussed using second-order averaging. Finally, sect. 6 contains
the conclusion. Throughout the paper one can see how Melnikov's theory
gives global results, which enable us to prove the onset of chaos for periodically

perturbed nionlinear systems like the pendulum with variable length.

q~.(2) J1. Gt'CKEsrrErifEzt and P. J. h1OLMEs: Nonlinear Oscillationsp, Dynamical Systemns

, 44.and JBi/mrcatione of Vector Fields, Appl. Math. Sci., Vol. 42 (Springer- Verlag, Berlin,

(3) S. E. NEW11ousE: Topology, 13, 9 (1974).
(4) S. E. NrijV1ousE: Publ. Math. IIIES, 50, 101 (1970).

(1) 8. E. Nu-itotisE: Lerfurcs opt dynamical sy.gtenis, in Dynamical Systems, C.I.M.E.
Lc.-ture.q, Bressanone, Italy, June 1978, Progress in M11athematice, No, 8 (Birkhauscr,
Boqton, 'Mass., 1980), p. 1.

-~ (~)N. K. GAvn1LOV and L. 1'. Smmnsov: Math. USSR Sb., 88, 467 (1972).

LI . ~ )N. K. GAvtov and L. P. SILNIKOV: 311t. US8I? Sb., 90, 139 (1973).
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We hope that it will be possible to make real experiments on this system
as in other comparable systems (8) in order to test the physical validity of
Melnikov's theory.

Stops in this direction, that is, examples in which Melnikov's theory has
been compared with real experiments, are those described in ref, (.14).

2. - The physical model.

We consider a simple damped pendulum with unit mass and variable length
in 1he gravity field, driven by an oscillating external torque. It cal be showni
11hat the equation of motion which governs this system is (15)

T)'- - + Ig sill. = -- + r, sin (0r) ,
d\(T) (IT

r, ri aind co, being nonnegative constants. Hlere x(T) is the angular displacement
from the vertical at time T. r is the damping constant, r, is the amplitude of
I he oscilhlI ing external torque with frequency w1 and g denotes the gravitational
cojistant. The length 1(r) of the pendulum is assumed to vary With time T

acord ng lo

(2) l(T) = a-+ -bsin (wr) , a >> b > 0, w > 0.

Ititrodueig U = b/a< 1 and wc = gla, eqs. (1) .-44 (2) lead to

d'.r d.x
(3 1 -'11 Sill (OT)) l f- 2(o)11 cos (ar) - +

,F r, I( - II si (n~)) -= ,"r dxt 3t s" r ,inl (n, Tr)
r2 (1.1 r2

(") M. BAItTICCELLI, P. L. CIIRISTIANSEN, N. P. PEDERSEN Mid M1. P. SOERENSEN:

Phys. Rev. Bi, 33, 4686 (1986).
(0 Z. G. GFNCllLV, Z. G. IVANOV and 13. N. TolDOnOV: IEEE Trans. Circuits Syst.,

t-.\S-,30, 633 (198:3).
(to) 13 1'. Kocii, It. WV. LIvr,, It, Pobirp and R. \VILKE: .P'hys. Lett. A, 96, 219 (1983).

It 1'.P. Kocir and R. NV. LvEv.: Physica D (Utrecht), !6, 1 (1985).
IR W LEvI., B POMPE, C. WVJLr and B. 11. Kocit: 'hysicct D (Utrecht), 16,

371 (1985)

(") F. M, A. S)A.O.: arid S S. SAS] RY: The complete dynasttics of the forced )scphson
Pow.io)4 circuit." the regions of chaos, in Chaos in Nonlinear Dynamical Sys' , is, edited
ly ,. Cir. .,rl., (SIA'f. hiiladelphia, Pelin., 1984), p. 43.
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This equation is valid to order O(H). Dividing eq, (3) by w and redefining
time T as t=coT, we obtain

(4) ± - 211 sin((? tiY -+ 2 (If cos (t i +(1 + H sin t sinixNOo 11 (Wo V ))I

+ ,-_ sin (t

Dots denote derivatives with respect to the normalized time t. We now retfille
the parameters in eq. (4) according to

r 0 -- (g,

M a 
,2  

(,4
0 
a 2

(5)
- W1,, - = @ and -H = e-7H,
NO

0  (11
0  MO)

where E <1, Assuming H/<< (w/coo)H < 1, H< eft and H< e, eq. (4) (after
dropping the bars) finally reduces to

(6) i + sin x = -[- fl + el sin (co, t) - 2oH cos (otfl.

3. - The heteroclinic Melnikov function.

Equation (6) can be written as a system of two first-order ordinary dif.
ferential equations, i.e.

(7) Iy = - sin x +- [- i + o, sin (w 1) -- 2H1w cos (w t)i]

When e = 0, system (7) becomes the clab ical simple-penduhlim equations

= Sill X,

which is known to be a conpltvly integrahle system. lmeii, uq. (6) 1, ;6
TIramilton in system ,: the flamiltmoim given by
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Besides, the unperturbed system (9) has the folio wing solutions:

a) Oscillations with energy Y~(x, y) < 2.

b) Complete revolution (rotations) with enecrgy Yr(x, y) > 2.

c) Aperiodic motion with energy Ae(.) = 2.

Vie orbits corresponding to cases a) and b) are periodic orbits.
InI order to compute the heteroclinic Melnikov function (2.14) it is necessary

to) know the so-called heteroclinic solutions (1) of the unpcrturbed system (8),
They are given by

Z(t - to) = ±2 tg- I [sinh (t - to))]
(10) L

This ease corresponds to case c) described above. The Mecnikov function
for system (7) is (2)

(1U) M--(t 0 ): f!7(t - t0) (- fly(t - to) + e, sin (w, t) -

-2Hw cos (wot) (t - t4)] dt.

Making the following change of variables in formula (11): t t + t0, we

(12) H'If (to): #fP){-f~(t) +e, sin [Col (t -- to)] -

-21rw cos [w(t +to)] q(t)) dt

which is more convenient in calculations. Substituting formula, (10) into for-
tntula (12) and making the calculations, we arrive at the following result:

1: Vf±(to): -f 8/1 ± , sin (w, to) seeb WI~1

-. '7t) 21! Cos ((folo) coscl (0 L)

If sin w, to ±1 and cos wt. 1, corresponding to the ratios w,/co
-(I -+ 4s)1(2 + -~) and w,/w = (3 + 4s)/(2 + 4It), where s, t are integers, thec

')It. D). (jitiE:mSPA and 1P. J. 1LIOLkS: IMonorlinic orbits, sub1,amtronics and globl
Ihi(,rcations ift forced oscilItiofl8, in Nonlinear JDynantics and Turbulence, edited by

f; IIAItEN 1I-1ArT, G. looss mid D. DI. JosEi-i (Pitm;ann, Londlon, 1983), p. 172.
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M[elnikov function will have infinitely many zeros when

(14) L)I>Cosh( 1W) [--.1 HW2 cosechI( W)]

the corresponding condition on H becomes

(15) HB1 (L/ - sech .

The equalities in formulae (14) and (15) characterize the onsAt of the
heteroclinic bifurcations with an approximation of 0(1) for sufficiently small E.
Furthermore, the strict inequalities (14) and (15) characterize the existence of
transverse heteroclinie intersection points between the local stable and unstable

branches of the heteroclinic orbits (10). It may be shown (2) that, if tle st;Lbh

and unstable branches of the heteroclinic orbits (10) intersect transverse .y
once, then they intersect each other infinitely many times. The presence of such
intersecting orbits implies that the Poincar6 map has the so-called Smnah,
horseshoe (2). A Smale horseshoe contains a countable set of unstable p(riodic

orbits, an uncount.Lble set of bounded, nonperiodic orbits and a dense orbit.

It should be noticed that even though the Smale horseshoe is extremely com-

plicat,,,d ,n,1 contains an uncountable infinity of nonperiodic or chaotic orbits,

it is not an attractor. However, it can exert a dramatic influence on the Ib(-
haviour of orbits which pass close to it. These orbits will display a sensitive

16 I

12 -12

0'5 .o . :o , , 8

0 0.5 1.0 1.5 2.0 -, 25 02

Fig. 1. Fig. 2.

Fi 1. - cf,'ror'linic ifurcation curvc in thm (('), .,)-pilano (eq. (14)). Smua;i horse," i ,
Iihao ahnvo curv,. ITft = 0.2.

Fig. 2. - II tprochnir bifurcathon tirve ii thin (,,, 1!) pararneter piano (-q. (I51).
Siialf hor ,shoo vhaos al,,ve curve. n1/13 = 0.2.
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( 1 )cpndenCe on initial conditions. Thus system (7) has a Smaic horseshoe in
its dynamics when inequalities (14) and (15) are strictly satisfied. The bi-
fircation curves in parameter space which separate regions with and without
Sriiale horseshoe chaos arc given by the equalitics in formulae (14) and (15).
T) itse curves are shown in fig. 1 and 2, where Q,/,x and Hlox are depicted as func-
tins of (o,. In both figures we have chosen thc ratio w,/co = (1 + 4s)1(2 ± 4t)
Nwith S = t= 1.

4. - Subharrnonic Melnikov functions.

In order to apply the subharmonic Meflnikov functions (2) w'A need to know
thle analytical expressions of the periodic solutions of the unperturbed problem.
In fact, the subharmonic Melnikov function for system (8) is defined as
follows (2):

(16) AIIt(4) =fI1q-(t)]A9tq'(t), (t -+ t))dt.
0

Here qa(t) is a periodic orbit of the unperturbed system with period Ta
=(m/n)T, m and n relatively p~rime, T is the period of the perturbation 6g.

For system (8) we have twvo qlialitatively different p)eriodic solutions:
the oscillating and the rotating solutions. The analytical expressions are

fx..(t -to, k) = ±2 sin-' [ksri(t - t0 , k)),

for the oscillating case, and

r.t- to, ki) = ± 2 sin-' {1n k(t - to),

y (t- to, k) = ± 2 kdn [k(t -to), ]

for the rotating case. We note that ji os * and 4 ro * stand for oscillating and
rotating, respectively.

In e!qs. (17) and (18) sn, en and dri are the Jacobi elliptic functions, and k
is the elliptic modulus (11). Moreover, for system (7) %ve see that the period

(17) P- 1". BYRtD and M. D. FnrEDMAN: Handbook of Elliptic InItegrals for Entgineers
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of the perturbation is

(19) T = pT. = gT 2 ,

where to/co = p/q with p autd q relatively prime and where T, = 2/o,, 1'.

- 2_w ire the periods of sini tet and cos wot, respectively.

We now compute the subharmonic 3chiikov functions for these resonant

periodic orbits. The resonance conditions are

m in 27E m 2.r(20) 4K(k) T'= m 4K(k) = mT =-

n l n ( (1

for the oscillating motion (k < 1) and

(21i) '27%(1/,k) m rm _) 2t. 2K(1/k) m m q 2__
2)k it U (Oj k n n P)

for the rotating motion (k > 1).

li (20) and (21), m and n are relatively prime natural numbers and TK(k)

denotes the comphe elliplic integral of the first kind (17).

The subliarmonic Melnikov function (16) reads

(22) A ),, t0 ) =Yo.(t, k)[- fly.(t, k) + ol sin (o, t + w, to) -

0

- 2Ho cos (oit + wt,,)yo,(t, k)](It

for the oscillating case and

(23) MIl'(to) -fyo(t, k)[- fly,o(t, k) ± Lo sin (wi, t + wo to) -

0

- 2H(o cos (wt + ct,)yo(t, k)] ut

for the rotating case. Now inserting (17) into (22) and (18) into (23), respec-

tively, we get for the two subhliarmonic Mulnikov functions

Mr mlr

(24) 4T'"(to) - - flk2f cii (t, k)dt-L2qlkfsin (ct +jo to)cn(t, k)dt -
0 0

mT

- 8Hcok'fcos (at- 4 .t) cn'(,, k) It,

0

(2 ) , i f cs (r,,t f,,t,) dfl (kt, -) lt.

0
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Tile second integral of expression (2.1) vanishes except for n = 1 and odd
top, while the third one vanishes except for it 1 and even rnq. Mn these
caseq wve obtain

(263) J1.1(t.) =-16#[E(k) - k'2 K(kfl j4no, secli ((&1K'(k)) sin (co, to) -

- 107tff(02 cosech (woK'(k)) cos (cot,).

For th~e. rotating motion we have that the second and third integrals of
vxpressioii (25) vanish except for n = 1. In this case we obtain

27) ly"') 8 flk() I1k) d- 2zo sewh ( L), !C( I /A)) sin (tO, to) -

- Sn I1tol Cosecli (wK'( I1k))Cs(oo

In (26) and (27), K'(k) = K(k'), and kc' is tihe complementary modulus,
l\ohch is related to k by k'2 = 1 - (17). Rearranging eqs. (20), (27) we find

two necessary conditions for the occurrence of subbarnionics of periods mT'
wvith an accuracy of 0(l); these conditionis are

126

(I 12

8 -

0 ~ I . . . . .

/i.3 Fi. 4

1 0 1-o hnt 2ii-e L f = 00.5.02. 20. .

Fir .- SHIhhAIR,,,o0iC e~VS for I he oilhtig case andt hic.~rochitic bifureatioi curvc

m til (()v, , ) jparaiitetor hilalle (vqs. (29) 1Lld (14)). Solid curvo: (nip, mtr) = (3, 2),

0i, 4), (9, 6) an(I lioterodce cilrve over1apping. 11/f? = 0.2.
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and

(2)IwC0 1 oK'(l 1k)\ 4flk 4H(0 twR"e oK(l/Ik)
(29 osh~k - z - T - 4wcoeh k

V -4 , I,<,, [ E (Q)_ ,
The subharmonic bifurcation curves corresponding to formulae (28) and (29)

are shown in fig. 3 and 4, respectively. In fig. 5 and 6 we show enlargements
of these curves.

10.70

5.2 -10.68

.5.0 o 10.66 E. mq ) in O

t..8 ~ ~~~~10.6< ,,. -"= ,.

4,.6 7 0.62
1.500 1 525 l i  1.550 2.000 i 2 001

Fig, 5. Fig. 6.

Fig. 5. - Enlargement of fig. 3 inl the region 1.50 < o,< 1.55. (rap, mq) indicated in
the superscripts.

Fig, 0. - Enlargement of fig. 4 in the region 2.000< ol<2.001. (mp, mq) indicated
in the superscripts.

Similarly, we car. obtain the expressions for the occurrence of subbarmonics
in the (w,,H) parameter plane. They are the following ones:

(30) llo.sinh ('(k)) (E(k) - k' 2K(k)) - sech (w,lK'(k)) . .

(30) If2, 4 1
sirnh ((,K'( I/k))lk) [i/w, K'(1 /4-) __rm'fl)(31) Il. - E 1k) - sec• o

As above, the subliarmonic bifurcation curves corresponding to formulae
(30) and (31) are shown in fig. 7a)-d) and fig. 8, respectively. In fig. 9 we show
the enla.rgoinent of tie rotating case in the interval 3 .000<(O,<3.001.

In the oscillating case the resonance condition (20) can be solved for each
choice of mp, mq with 2amp/ncow > 2r and 2;rmqfnwo > 2 -r. The curves in fig. 3
and 7 are restricted accordingly.
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Formulae (28)-(31) converge to formulao (14) and (15), respectively, be-

c.iUSO

li urn .3( 0 )=ur 1(t0) = 1tl(t,

12 12
a.) b)

4 

4

0 2 4 6 0 2 4 6

Z 12 12

C) CO)

88

44

0 2 4 6 0 2 4 6
wl~

['hg. 7. - Subliarmonic curves for the oscillating case, (a).c)), and hoctoroclifiic bifurca-

tion curve, (d)), in the (cu,, H) parameter piano (eq. (30)) for mnp =3, 6, 9 and mnq=
=2, 4, 6 and eqs. (15) and (30), respectively. fl 0.2.

16

12 1

Fig. 8. -Subliarrmonic curves for the rotating case and hetoroclinic bifurcation curve

ithe (cal, H) parameter piano (eqs. (31) and (15)). Solid curve: (mnp, "nq) = (3, 2);

dottod curve: (6, 4); dashed curve: (9, 0) and liotoroclinic (overlapping). eI/P = 0.2.
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0.9168 . .

." I

2 " I /
6.4).

(961 , -
.• f ,, /

"' H6 " /
) 0.9166 .. . '/

- I

I.1

0.9164 ____________________

3.0000 3.0005 ". 3.0010

Fig. 9..- Ezlargemcnt of fig. 8 ii the region 3.000<w, 13.001.

The figures demonstrate the convergence is extremely rapid.
From this it follows that the leteroclinic bifurcations are the limit of ;6

sequience of subharmonic saddle-node bifurcations. Furthermore, w( e:L
define the convergenco rates as

(5 = lim

ald

-( urn ) R -(mq,.,i--t)o---- lim

where i = 2 in the oscillating regime and i = 1 in the rotating one. Makin,.'
the c.lculations we find that 6 = exp [2 w/co] and 6, = exp [2./co] in both
regimes.

2

I ,i

- 2 ,) b )

7450 t 7500 7300 7400 t 7500

]"ii.. J ). - N ninerical qolution (f 3q. (6) for 2 sin-' k = 1.6, I 0.1., , - .
")I = rp/2K(k) al(li = .rtuq/2K(k) with mp = I and mq = 2. a) H = 0.0144,.
1h) H[ - 0.0143.
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The previous predictionsR by Mfelnikov theory for subliarmoici bifurcations
wvere tested by a numerical simulation. For parameter values 2 Hjil- k = 1.6,

= 0.1, 0, = 0.1, co, = mp/2K(k) and co = nImq/2K(k) with mnp = 1 and
niq = 2, eq. (30) yields the critical value 110. = 0.0147. Figure 10 shows the
niinerical solution to eq. (6) for the same valties of k, Pi, e,, cu, and wv. For
It 0.0144 we get the stable subhiarmonic solution shown in fig. 10a), while
a ilecrease in H to H = 0.0143 makes this subbiarynonic solution unstablo as
seen inl ffig. l0b). The p~rediction by Mclnikov theory thti4 only deviates by 3 %
However, it is important to notice that we cannot u~se subhiarxnonic Melnikov's;
met hodI for proving that the stable and unstable manifolds of the hyperbolic
orbits intersect transversally. This is because the subhiarrnonic MeN(,lnikov
fiinct ion is exponentially small and the remainder in the perturbative series
becomes important (18).

.5. - Stability analysis of suhharnionic orbits,

In this section we shall use the followig perturbation method (1-1-11) inl
irdler to get information on the stability of the subliarmonic orbits. 'We consider

the p)ertuhrbedl syslem (7); because it is a4 lamiltonian system wvhen C = 0,
a symplectic change of co-ordinate to action-angle variables call be found:

I =I(X, Y) ,
(33)0 

x )

Using transformations (33) system (7) becomes

=eg - = EJ"(f, 0,t) ,

[ +1 -g- g- = [2(1) + CG(1, 0,t)

(.35) g -l+ sin tot -2Hcucos (wt) i

is the perturbation, and

(:$(i)d 2n(I)

is, the aiitlar frequeney of the unperturbed orbit [afl(t - to), yll(t - to)] withl

11) . HIOL.MS: Phy8ica D (Utrccht), 5, 335 (1982).
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action I -- I[x=(t - t.), y1(t - t")], and

(37) T- =p T, = !q
n n

If we now consider small perturbations of a resonant orbit T, we can ap-
proximate the variations of the action-angle variable& as follows:

= 1-+ V/ h(t),
(38) 1 : D(I ) t + (t.

Making the derivatives with respect to time, we obtain

h A V_/F(I fat + ,, t) + EF'(I,, Qat + p, t)h + O(Ed)
(39)h

(39)7fi'Uh ± e [G(I , Qat ± 'p t) + Q5(Ia) ±-*] 0 (e),

where the primes denote 8/8I
If Q'(1a) is bounded we can apply the averaging theorem (11) for V'7 suf-

ficiently small. This yields, with an averaging transformation (h, P) - (h, i),

=VQh+ e ± G"h2 )] + 0(61)

(]O) ~ I M~/~')+ EP" (M-) A + 0(EI) ,

where F' and G are the averages of F' and G. For more details, see (16).

Let us start with the action transformation: In order to deduce the exprzs-

sion of the action variable I it is convenient to write the Hamiltonian dy = Y(x,
y) = y 2/2 + (1 -- cos x) as a function of the elliptic modulus. Both in the

oscillating case and in the rotating one we obtain

(41) J(k) = 2k 2

where 0 < k < 1 and k> 1 in the oscillating and rotating cases, respctivoly.

Using formula (41) and standajrd methods for the computation of the actii

(") J. R. HALE: Ordinary Differential Equat-rns (J, Wiy & Sons, *c\V York.N. NV..
I 9(9).
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va.riable (0) we arrive at the formulae

(42) Io.(k) [E(k)k"K(k)]

for the oscillating case, and

(13) '. ,(k) 4kE (Ijk) ',

7,

for the rotating one.
The expressions for Q(Ia) given by formula (36) are '

71 0ii (041i

2K(k) mq mp

".n di

7k CO _ ...
(45) Q(JI) = K(lfk) - mq -ap'

where k is given by relationships (20) and (21), respectively. Using the

identity Q'(IP): aQ(I)[8II,.1.. and formulae (42)-(45) we obtain the following

expressions:

__ D ([E(k) - k'K(k)]
- 16kkK(k) -< 0

and
n2 k'E(l 1k)

(47) Q'K) 4k (lk ) > 0 .

Further, we have D'(I'):- 8IQ(I)/81111.. and from this we get

31 d [E(k) - k'2X(k)j
(H ) Q'() - 128kK(k) dk [ -k'k"21(k) J

3~ d rk2E(1/k)1
16K(Ilk) dk Lk"-K3 (1jkj

Finally, from (26) and (27) we obtain

(50) Mf'(pI.Q<') 1M( /Q') = - 16fl[E(k) - k'"K(k)] +

±4-o, sech (o 1K'(k)) sin (mpq) - 16;rHco' cosech (wK'(k)) cos (mqp)

) I. Pci CIVAL and D. RICHARDS: Introduction to Dynamics (Cambridge University
I'rtcss, Catsibridgu, 1982).

154"
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and

(51) M ,IQ,/q ) _-- t%q/Q9.) = _ fiL'E(I/k) .

± rj) sech Sill(( k sjn pq) - 87E1 1
w2 Coseeb (7'11)Cos ()I~qrP)k k)

We first consider system (40) to the order O(V"E), and dropping the bars
we get

for the oscillating case and

": ) = v o(I~h ),, h = ! (q/Qr)

for the rotating one.

Such systems have fixed points at h = 0 and at the values of 1P for which
;(/Q ) =- 0 and M=( p/Q')---0, respectively. For both systems, sui(hi

fixed points arc saddles, if 8M/1-8 > 0, and centres, if LM/29? < 0.

h

0
0 5 

i

-0.5

-1.0.
1.0

0.5 •

0

b) C)

0 1 2 P 30 1 2 9) 3

F"wr. I I. - ]'h;se portraits of sy, tenr (52) for the oscillating caso with 2 si-I A -
- 1.0. /? = 0.1, o, G1, P = 1, np = I and mq = 2. a) H = 0.002 < R ' -

- HP . 4 70 (cq. (28)). No periodi point:i. b) 1 1 ' 
. Doubly degiriratc poiw .

11 - o.mi3 > J;"'" *
. svlvIs I nl1 (cnltrcs.
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0

-0.5

CO

-0

h

0.5

0

-0. 5

b) C)

Fi r 12. - Phase portraits of systcem (53) for the rotating caso with k =1/0.05,
j;=0.1. onI = 0.1, E = 1, rnp = I and mnq =2. a) LH = 0.02 < krm~'' = 0.114 642
(v.(29)). No periodic points. b') 11 D 4'.Ioubly dogonorato points. c) IT
o. 2> R(. PI'Q. Saddles an(1 mitres.

Ini fig. lla).c) and 12a)-c), we show the phiaso portraits of systems (52)
o nd (53), respectively, corresponding to thle choices of mp = 1 and mq 2,
41141 thle pIw, s igni in formula (50), which give.s

M,*(q1Q~) - lfl[E(k) - k"K(k)] + 4;re, sech (oj 1K"(k)) sin p

- 167rffow cosech (coK'(k)) cos (21p),

an jd corresponiding to the choices of mp 1, mq 2 and the pIns sign in for-
midah (51), which gives

1! ,.(r,/f - - MflkJI 1k) + ~,seth Rl 1

-87r1hu
2 cosech(ll '!L) cos 2T'

Thelnse figires showv the three cases of H.. and H, less than, equal to and
Lirg-r- tlni the values of the corresponding subliarmonic bifurcation curves.

0'
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Then, according to the averaging theorem (11) we have that the full system (7)
has saddle-type orbits near the saddle points of (52) and (53) and periodic orbits

near the centres.

Furthermore, we note that systems (52) and (53) are Hamiltonian systems

with Hamiltonians given by

2

where

= -nf M-(TS/Q) dp,

i.e. explicitly

(54) *., h'-14a-- --16fl(E(k) - k"K(k)q,) T1 2 2P

!P47o,se (.,K'(k)) cos ,,p mp - 1 lllcose h ('Kk s (rq 1'

(55 .14  .re h2 [8kE(llk)'(:F

-T 2ne sellCo (w Ilk)) Pcos (Ynp~) __8;rIcol cosech (wIC'(/k-))sin i(T)1

Since systems (52) and (53) are structurally unstable, it is necessary to

take into account the 0(e) terms in system (40), where

mr

m- T f11-*F~ I

0

and
,mr

(P)-- f G(Q-t + 9 la, t) dt

with

If" (0, 'l t) = F(O, 1, t) ,

F(O, I, t) = [-fl:; + Q, sin (ot)-2Ho cos (uA)d]i]

and

((0, I, t) ax fli+ q, sin (a), t) - 211w cos (,ot) ij



ChAOS IN PENDULUM WITH VARIABLE LENGTH 247

Making the calculation we obtain

fA.(q) =-(A 1 + BJ') ± L0 1(AJ. + BJ') sin (zapp) - H(AJ, + BJ') coo (Ymqg')

G. ± ) (AC!, BJ') c-os (7p) + H(AJ3 + J)~ mq
mp mq

J,= J,(in, w1) =4n sech mpnK(k) if=dJ2K(k) aT

J, = J,(mn w) =16nw' oc jmqrxK'(k) J d=21J
2K(k) d

A =A (Ia))mp

B = Bin) ot >0
87rmpk

in thc oscillating case, and

=-fl(AK 1 + BKC') ± g1(AXK, + BK') sin (mnpq) -

- H(A K, + BK,) co8 (mq97),

,Cos (mprp) +HA4+B)sin (mnqq)
Q() ±dK+ BK,) mp + t..+ ?, nq

dk

K, = A72(ti, wo) = 2;r sech mpZK'(1 1) =dK

Iiq(1 /k

K3 = A,(m) =p~ 87 Ia)eh K

1; B 1(m) = -(
87impk

in the rotating case.
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The traces of the linearized system (40) read

(56) Tr.. (L) = - efl[AJ 1 + BJ,,]

in the oscillating case, and

(57) Tr,. (L) - - efl[AK 1 + BK']

in the rotating one.
They are both constants. Thus according to Bendixon's criterion (2) it

follows that system (40) cannot have closed trajectories.
In fig. 13a)-d) we show the phase portraits of system (40) in the oscillalijig,,

case, In the rotating case one obtains analogous results.

1.0
h

0.5

0

-0.5

1.0
h

0.5

0

-0.5

b) C

0 1 2 9P 30 1 2 (p 3

Fig. 13. - ]b'}se portraits. of syst.m (40) in the oncilliting caso with 2,in I /,

- 1.6, /? 0.1, L - ).1, e = 1, mp = I and mq 2. ,z) 1! 0.oO2< ItJ P.
9.0)147)6 leq. (28)). No e ri oinb ., b) 11 - jDom;) .y ,d4g('wra . poinl .

c) 1I = 0.03 > R11'I ' ) . Sink and saddlo points.

It. is important to note that these results are not uniformly valid. hial.

the factor Q'(Ia) becom's unbounded as c -c oo. Therefore, s I. incr.:i.,-.

avernging is valid in smaller and smaller regions 0 < r co(m).
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6. - Conclusion.

Li this paper we have investigated the onset of chaos for a perturbed peni-
d itlum with variable length. We show that this system exhibits Smale horseshoe
chiaos for certain ranges of parameter values. Tho bifrceation diagram shown A;
ill fig-. 2 givei sonie insight into the behaviour of the systemn. Ono can See that
when w, goes to zero we do not get Smale horseshoe chaos. This is in agreement
with the well-known classical phenomenon that the action variable is an adia-
hatie. invariant for this system when its length is varied sufficiently slowly.

Furthermore, by using tile subhiarmonic Melnikov's functions we have
obtained the bifurcation diagrams for thc occurrence of subliarmonic orbits.
'rhese subhiarmonic bifurcation curves converge (rapidly) to the heteroclinic
bifurcation curve. This result implies that the hecteroclinic bifurcation is the
limit of a countable sequence of subliarmonic saddle-node bifurcations.

Moreover, making use of the averaging theorem, the stability of the sub-
harmnonics was investigated. Ilideed, according to the averaging theoremn the
equilibria of the averaged system corresponid to cycles of the perturbed system.
WVe have found that the fixed points of the averaged systcm are sinks, and
saddles which are created through saddle-node bifurcations. This implies
hat the perturbed system, at least on a time scale of 1/E (for 6 sufficiently

small), hi.is a hyperbolic periodic orbit of the samec stability type as8 the fixed

poinits of the averaged system.

The financial support of the Consigio Nazionale dl Ricercho, Roma,
Italy, to two of the auithors (MB and VIN) and of the European R~esearch Office
of the United States Army (through contract No. DAJA-45-85-C-0042) is
ackniow led ged.

*RIASSUNTO

1j) qiiesto articolo ai applica la teoria di 'Mclnikov per predire analiticarnonto la pre-
seimi di caost (SmIale-horscghoc) inl uii pendolo cuitlutigliczza variabilo ill prcsecnza di
disgip~aziotie e di un tcriinci forzante. Si zuostra cho tale sistonia diiimiico prcsczita
mia eascata di biroreazioiii eterodiiclic quaimdo i paranictri chc ciltraiio reII'cqimzioiio
litferenziale de Io descrivo sotto variati. La preseuza di qiiesto biforeaziotti 6 la sorgenLo

dll lunto caotico. Si studia inoltro la stabilitht dl subarmiiinic faceiido its0 del teo-
ilma di-1la miida tcemporalc.

Pe3lom1e He nlonytfelo.
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Note

Split-Step Spectral Method for Nonlinear
Schr6dinger Equation with 'Absorbing Boundaries

By application of spectral mcthods [I] the computational solution of nonlinear
partial differential equations has been improved in accuracy as well as efficiency in
particular on vector computers. Fourier spectral methods [2] require periodic
boundary conditions often in contrast to the actual physical problems where
modelling by outflow boundary conditions may be appropriate in many cases.

In this note we consider the cubic nonlinear Schr6dinger equation (NLS) which
occurs in nonlinear optics [3], deep water wave theory [4], plasma physics [5],
biomolecular dynamics [6], e.g. The equation can be solvcd numerically by the
split-step Fourier method (SSFM) described in [7, 8]. We generalize the method
by including an additional term in the partial differential equation with the effect of
absorbing outgoing radiation at the boundaries. The applications of SSFM require%
periodic boundary conditions. However, the drawback of these conditions is
eliminated by our new method.

The NLS with periodic boundary conditions is given by

ill, + ,, + 11112 u = 0, (Ia)

u(-L/2, ) =u(L/2, t), and u.(-L/2, 1)=u,(L/2, 1) (Ib)

-L/2 <x<< L/2, - o<I< oo, arid u= u(x, 1).
The SSFM in its original form consists of two steps. First, the nonlinear part of

Eq. (Ia), iu, + Jul' u =0, is solved by means of the simple wave solution u(x. 1) =
u(x, 0) exp(ilu(x, 0)2 t). Second, the linear part of Eq. (Ia), in, + Ii,, = 0, is solved
by means of Fourier transformation.

Our modified verion of NLS is

iu, + u,,,.+ Jil 2 u +i,(x) u = 0, (2a)

u( - L/2, t) = u(L/2, t), and u( - L/2, t) =u,(L/2, i), (2b)

where the real function y(x) in the absorbing term, iy(x) It, is given by

y(x)=y1 1(sech[(x- L/2)] +sech 2[a(x + L/2)]). (2c)

As seen in Fig. I we introduce smooth losses at the boundaries x= -L/2 and
x = L/2 through this choice of y.
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x =-1.12 0 x b !,2

io. 1. The absorption function )'(.v) (2c) introduces losses in the neighborhood of the periodic

boundaries at r = ±L/2. Parameters 70 and a in (2c) must be chosen such that the scattering from the
.absorption walls," sech 2l(a(x P L/2)], is small.

In the corresponding new generalized split-step method we first solve the non-
linear part of Eq. (2a)

i,+ I rl 2 il + iy,(X) ri = 0 (3)

for which we have found the exact solution

ri(x, 1) = a(x, 0) exp{il a(x, 0)12 (1 - e- ,)/2y - y) } (4)

by inspection. Second, the linear part, it', + u, = 0, is solved in Fourier space by

t(k, 1) = ,(k, 0) ex p (-kWt12}). (5)

Also in our generalized SSFM the solution is advanced one time step it by (i0

obtaining R(x, At) from u(x, 0) by means of (4) with a(x, 0) = u(x, 0), (ii) inserting
the Fourier transform of i(x, At) as &(k, 0) in (5)

(kAt) = f ii(x, At) exp{ikx) dx exp{-iA24:/2), (6)

and (iii) transforming the resulting 0 (k, At) back to x-space

u(x, 4)=- I U(k, At) exp{-ikx} dk. (7)
21r ,

This method is second-order accurate in At and all orders in Ax and is uncon-
ditionally stable according to linear analysis [8].

Figure 2 shows the time development of the initial condition

u(x, 0) = (I + 0.6 cos 7x) sech x (8)

in two cases: (a) subjected to the classical NLS dynamics given by ( I ) and (b) sub-
jected to the NLS dynamics with absorption given by (2). The initial condition (8)
desribes an NLS l-soliton [9] with radiation superposed. In case (a) the radiation
cannot escape from the system owing to the spatial periodicity and eventually
destroys the I-soliton. In case (b) the radiation is essentially absorbed already at
the first passage of the boundary leaving the I-soliton undisturbed.
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4.~ 1

Fau2.Evluio o NS -slion 8)wih ynmis ivn y a) lasialNL (),(b NS it

absorp Eotion nth NLS eqution )wthi dnewmick me b akelsihe NSF much moreSit

applicable to the physical problems mentioned in the introduction.
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Nonlinear dynamics

Observations of real solitons
Peter L. Chiristiansen ?40*

So I ,NS are localized nonlinear waves their shapes, which can propagate and
that car. propagate and interact like par- interact with cach othcr completely non-
ticles Theoretical studies show that destructively, suffering only phase shifts
phenomena such as water wavcs. light as a result of the intcraction.
pulses in optical fibres, magnctic-flux In certain respects, Perring and te8.
quinta in superconducting devices and Skyrme's paper foreshadows the pioneer-
coherent excitations of biomoleculcs can ing work by Zabusky and Kruskal on the
he soitons. Computer simulations show Korteweg-dc Vries equation (originally
that sohtons can form in the presence of formulated to describe shallow water
such realistic features as frictional loss
nsechoinisms. external driving forces and 120'

thermal fluctuations. The solitons will
exist under these circumstances for _ _ _ _ ,._..
,,ulfictntyV long to he important features 0 ' 0 20
in the time evolution of the wave cxcita- ,,, T ,,

tions Experimental demonstrations Fig. 3 Collision of clockwise and anticlockwhise
of soliton dynamics. however, arc still . ' ienvelope solitons (ravelling around a tin

scarce 'hcrefore. two recent papers by cylindrical shell. The shape of the cnselopc
ltiliaki. Nakajima and Sawada' and by persists because of the balance betwc,n
WV. Wheatley, Puttcrman and Rudnick" amplitude dispersion and the nonlincarits of

Inoss g solitons in rcai -ystems arc most the elastic medium. Without this balance the
n i tc ,o rthsv wave packet would disperse. The top tr.ce

hlie work by Fujimaki et al. deals with shows the excitation pulse. (From ref. 2. _

ioll.,ii of solitons on an electronic typically 4 x 10' m s '), and must also
h,,,cph,,on transmission line (JTL), 1.8 mm exceed a minimum value. T'he sampler
honL. composed of a sequence of 31 detects only at one central point. so that

di,rcte Josephson junctions (interleaved the flux across the whole JTL cannot he
'iipcicnducting and insulating layers). In measured in one go.
the continuum version of the JTL, the Instead, a variable delay 2At can be
h ,,cphson effect (superconducting ecc- introduced between the two fluxon
tris tunnelling through the insulating generators, effectively moving the fluxon-
li'cr,,) results from the weak coupling antifluxon pair left or right by a distance
hctccn pairs of superconducting thin Fig. 2 Fluxon-antifluxon annihilation process vAt. A single scan. such as shown in
tilns This overlap geometry is modelled observed a 0, b 8, c 16 and d 24 ps after the Fig. 2, is obtained by sweeping At. The
cr. accurately by the sine-Gordon equa- fluxons arc launched. The width of the picture time sequence shown in Fig. 2 is obtained
ion originally developed by particle is 1.8 mm. (Courtesy of A. Fujimaki.) by introducing a second delay AS before

physicists. In 1962, Pcrring and Skyrmc' waves), which introduced the soliton firing the sampler.
showed that this nonlinear partial differ- concept. The derivative of Pcrring and Fujimakietal. thus observe the collision
ential equation possesses solutions that Skyrme's kinks corresponds to the soli- of a fluxon and an antifluxon, in which the
they termed 'kink' and 'antikink', after tons. An isolated kink solution to the two merge, interact and dissipate their

sine-Gordon equation cannot be energy via a 'breather mode' (the soliton
destroyed and is therefore a 'topological' and antisoliton bound together in a local-
soliton. In the JTL theory. these solitons ized, lower-energy state) into linear

. .s Eo2 -Al carry magnctic-flux quanta (current oscillations ('radiation') which are finally
vortices) and are termed fluxons. Cor- absorbed by shunt resistances (Fig. 2)
respondingly. negative magnetic flux This agrees well with computational

0- -o quanta are carried by antifluxons. One results and can also be understood in
consequence of the theory is that the terms of fluxon perturbation thcor.'. In

Fill. I Simplified block diagram ofthe fluxon fluxons behave as relativistic particles other cases, the fluxons can survive the

I-purimeni of cumaki ei at. The fluxon and (their effective mass increases with collision. The fringes in the traces are non-

.iitifluxon (cross and dot. respectively) are increased velocity). In both papers" the solitonic effects inevitable in real versions

in),L tcd into the Joscphson transmission line analysis was dircctly inspired by computa- of such idealized mathematical concepts
0 I. made of 31 Joscphson junctions, each a tional results. The authors also demonstrate the rclativ-
., 4.iim: sandwich of two superconducting The superconducting circuit, made istic nature of the fluxons by showing that
hilm, and one insulating) by the fluxon genera- using standard lead-based technology, the product of the pulse height and the
trs FryI and FG2 Electronic delays EDI and consists of two fluxon generators, the JTL pulse width is independent of the fluxon
S)2 dCliy the fluxon and advance the anti- I and a sampler to measure the flux in the velocity.
Ilusn hy ,Si. effectivly shifting the system JTL (Fig. I); all are based on the Joseph- Wu et al.: observed envelope solitons

ri.,cftward along the TL The sampler son effect. A fluxon is injected into the in elastic solids for the first timc. In
rc. 'rib, the flux dens;ity at the midpoint of the
I I I 11tr .1 variable mechanical timc delay jTL when a control current I, to the fluxon contrast to topological solitons, envelope

(tl)i I AA The whole process is initiated generator exceeds a critical value. A bias solitons arc wave packets with a oliton-
,h( n fhi. control current 1, exceeds a critical current /. perpendicular to the JTL con- shaped envelope (Fig. 3). Earlicr expert-
.uc (I rom rcf I t trols the velocity v of the fluxons (which is ments with fluid surface wavcs have been



interpreted in terms of envelope solitons". classical fields, the slow modulations of remains to be obtained.
Wu et al excite flexural wave packets by the flexural waves on the shell are described I Fujimaki. A Nakjima K & Sa-ada. Y rh0 Re, a:

an acoustic horn driver on a circular- by the nonlinear Schr6dinger equation. $9. 2395-28911 1"7),
cylindrical thin elastic shell. The waves The parameters in the interacting enve- 2 Wu. J . Wheatley. J . Putterman. S & Rudnik. I Ph,,• ~Rei, ll"t , 27"-1.2747 (197)
propagate clockwise and anticlockwise lope soliton solutions of this equation can 3 Pern. J K & Syr,,e T ( R ,98) Phv, 31.

around the cylinder Their nonlinear be fitted perfectly to the observed data, 4 Zab,,ky. N J & Kuskai, M D Ph.,, R-. Let, :. :i-

interaction is seen by means of transducers thus implying the existence of envelope 2430&965)
5Pederwit. N F , Smueisen M R & Weiner D Phi, Rei.

mounted on the shell. The reason for solitons. B30, 40s7-4059 (1"4)

using thin shells is that this system is very Solitons are not of interest to physicists 6 Yuen. H C &Lake. B M Phv5 Fuids I1. 9V.-Q¢) (19",
s a7 Davydov. A S J theo, Biol 38. 559%-569(19711

dispersive and has a high nonlinear alone. Davydov' has proposed application 8 Cruzero. L Haidinl; J , Chnstiansen. P L . Skorgaard.
response, making the generation of soli- of envelope solitons to understand energy 0 &Scot.AC P R, A ithepre,,%

ions feasible, and a large quality factor, so storage and transport in protein chains.
that they persist Such a combination of Our computer studies' of the quantum
parameters generally makes soliton for- model of a-helical proteins show that the Peter L. Chrisnansen is at the Centre for Model-

ling Nonlinear Dynamics and irreversihle
maion in off-equilibrium (highly distor- solitons have long lifetimes at biological Thermodmynamics MIDIT). The Technt(al
ted) systems accessible to observation, temperatures. Unfortunately. experi- University of Denmark. DK-2800 Lynch'.

As in other quickly varying hyperbolic mental evidence of this mechanism Denmark

P, 'rd n(c;jrtin1 ,rccrl, 0'r' lrn~lh Ir~ir
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Thermal sine-Gordon system in the presence of different types of dissipation

M. Salerno," M. R. Samuelsen,t and H. Svensmarkt
Aodellering Ikke.Lineaer Dynamik og irreversibel Termodynamik, The Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 30 November 1987)

The effects of thermal fluctuations on solitons and phonons of the sine-Gordon system are investi-
gated in the presence of a a , dissipation. The analysis requires the assumption of a more
general autocorrelation function for the noise than the one used in previous works. We verify that
this leads to the correct results for the average kinetic energies of solitons and phonons in the sys-
tem. We also evaluate the lincwidth for a Josephson oscillator in the presence of both a and 1 dissi.
pation, and lastly we briefly discuss the extension of the theory to more general dissipative terms.

1. INTRODUCrION k*T
(n(x,)n(x',t'))=16a_ 5(X -x')6(t -I') . (2)

The effects of thermal fluctuations both on solhtons and
phonons of the sine-Gordon system arc relevant in the In Eq. (2) ( - ) means ensemble average, E0 is the rest
description or many physical systems in cortact with a energy of the soliton (used to fix the scale in energy), k, is
heat reservoir.' - t In the context of Josephson junctions, the Boltzmann constant, and T is the temperature. "nhc
for example, it was shown that thermal fluctuations in the prefactor in Eq. (2) was determined by applying the
fluxon velocity are directly related to the appearance of a fluctuation-dissipation theorem to a soliton with small ye-
very narrow oscillator linewidth.4"s The coupling of the locity.6 Among other results, it was shown that as a
sine-Gordon system to the heat reservoir can be schema- consequence of the thermal reservoir, solitons have an
tized as shown in Vig 1, where A represents an ordered average energy of 1kpT per modeY 7 This analysis was
flow of energy from the system to the heat reservoir (due also applied to a Josephson junction, leading to an cx-
to dissipation) and B represents a disordered flow of ener- pression for the oscillator linewidth in agreement with ex-
gy from the reser,'oir to the system (thermal fluctuations). perimental measurements.5 In the context of the Joseph-
This means that the loss term in the sine-Gordon equa- son junction however, besides a loss term proportional to
tion is intrinsically connected to a noise term (dependent 0,, it is of interest to include a loss proportional to 0,,,
or, temperature) representing the effect of the reservoir on which is due to normal surface currents through the junc-
the system. This scheme leads to the following thermal tion. This kind of dissipation is found to be responsible
sine-Gordon (TSG) equation: for several interesting phenomena such as bunching of

0,, -,-sin,=,7+ r(.o)+n(x,() (I) fluxons,9 and appearance of strong deformations on the
fluxon tail.1° The aim of the present paper is to extend the

where (o) represents a generic dissipation and n (x,t) is analysis in Ref. 6 to include this 0 ,,, dissipative term.
the stochastic force associated with the loss. [in Eq. (1) a More precisely we will consider r in Eq. (1) to be given
bias term 17 which represents ordered energy input into by
the system, suitable for many practical applications, is F(o)-ao,-160., a,/3ER +  (3)
also included.] In'recent papers the TSG equation was
studied by assuming a loss term proportional to 0, [i.e., and assume for the noise the following autocorrelation
r(Ol=aO, in Eq. (1)], and an autocorrelation function function:
for the noise given by k8 T

(n (x,t)n (xt')) = 16-(t -C)A zo

x a,. x 2 16x-') 4

The effects of the noise term (4) in Eq. (1), will be then
studied in the cases of pure soliton and pure fluxon
motion, respectively, in Secs. 1I and Ill. As a result we
find that the "thermal" solitons and phonons will still
have an average energy of, respectively, ! kgT and As T

FIG I. Schematized representation of the thermal sine- per mode; however, the presence of the 1l term in (3) will
Gordon system. A represents ordered flow of energy from the decrease the diffusion constant of a soliton by a factor
sirn Gordon system to the heat reservoir and B represents a/(a+fl/3). In Sec. Ill we also relate the above results
disordered flow from the reservoir to the system. to the Josephson junctions by showing that there will be

38 593 @1988 The American Physical Society
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no change in the linewidth expression given in Ref. 5 due R C - 1. (E,(t')E,(t)
to the presence of the 3 dissipation. Finally in Sec. IV we
give a short summary of the main results, including a 16 (+ 20k i kS( &I ) 1 (4
brief discussion on the generalization of the above- E,
mentioned results to higher-order dissipative terms of the
type , ,D with a,ER, D, =--a/3x, and m CEN. S2 (c)= 16(a+' k, T

S1. TwH E RMA 
+H1k,

11. THERMAL PHONONS By identifying a+Pk.2 with a we see that Fqs. III,.In this section we consider the TSG equation (14), and (15) coincide, respectively, with Eq%. (3 ')'.

0. -#0, -sin= 17+a -, -0., +n(x) (5) (2.12), and (2.13) of Ref. 6. One can follow ilic .ic
analysis or Ref. 6 to show that the average energy pr

in the small-amplitude limit and wtih no solitons in the phonon mode is
system. Phonon modes 0 are seen as small oscillations (H. )=kT I
around the grout.." state 0o= -sin-17 satisfying the
boundary conditions [This easily follows by solving by harmonic anialy-ts Ii,

0(6) U) and by using Eq. (9).) It is worth remarking that ti.
result does not depend on the particular boundary .ondi-

The field O(x,t) in the small-amplitude limit can be writ- tions used, nor on the smallness requirements of (z, /1,. and
ten as r/,

O(x,t=t--sin -t(I)+f ,(x,t) with 11011 <<1 (7) Ill. THERMAL SOLITONS

In this section we concentrate on the effect of the i, 13,
By substituting (7) in (5) we get the following stochastic TI, and n (x,t) terms in Eq. (5) on an unperturbed .mc-
equation fo" thermal phonons: Gordon soliton

0.. = 0. -() - )t/2 +a 0tb, -0.b. +n (x,) o (8) t=4tan-exp[y(u)(x -ut)] ,

When a=0, 0=0, and n (x,)=_0, these phonons are just
classical Klein-Gordon modes with energy given by Note that the 77 in (5) shifts the ground state from 0 it,

-sin-s7; therefore a soliton in our system should be wcCrnEo= LdJ°  +0,+ 02(l- l )i/29 asa 2r kink from -sin-i7 to2vr-sin - ',1.
Hph 1 6-f (9)" An equation of motion for the perturbed soliton can b-

easily obtained by defining the momentum
(here L is the length of the system). The general solution en
of Eq. (8) can then be expressed in terms of the complete P = - f +4',dx OX!
set , of orthonormal Klein-Gordon modes as

and differentiating it with respect to time, this giving
,(xt)=J A.(t)0.(x)=V217 A,(r)cos(kx) (10) dP r - .

with k, =dir/L and /21 just a normalization factor. where
Inserting (10) in (8) and projecting the resulting equation
along the unperturbed eigenstate we get C( _+., n (x,i)dx . 20,

A..,, +(a +kl)A.,, + to'.A. =E.(t) , (i) With neglect of thermal noise, Eq. (19) has sitiiniuar

where 21r-kink 0" solutions moving with the power-bal.im, t-
locity uo, for small perturbations, satisfying"

n.(t)= %'T1 " f 0 (x,t)cos(kx )dx (12) _( l- u1 o /" -au 0 (l -u )- g2 I
and 4 3

and with momentum
w. k,, . (13)

By using (4) we obtain for the autocorrelation function P=u-y(u) .22
and for the power spectrum of the normal process E,,() In the stationary case, the integrals in Eq (19) c.111 h,
the following expressions: written as

f--U ari~u) + ,(u) 23,81314
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,Ahere we used Eq. (18) together with '=-u0,'. Equa- the 21-kink motion is then to decrease its diffusion con-
lion (22) defines the functions y 1(u) and y 2(u) which for slant as one would have expected. We finally close this
small perturbations (or small velocities) reduce to the section by showing that the linewidth of a Josephson os-
usual Lorentz factor in (17). cillator with damping will still be given by the same

By inserting Eq. (23) into Eq. (19) we get for the expression reported in Ref. 6. To this end we return to
momentum the following Langevin equation for P: Eq. (24) (which is valid for all u) and rewrite it as

dP f._f V17(u) +(t )  (24) d 4 +rn 8u
dt 4 4 4p

The noise term () in Eq. (24) introduces fluctuations in
the momentum and, from (22), in the velocity of the kink this leading to the following expression for the power
according to spectrum of Au:

Pa --- aAAu+E(t) ,(25) S,.,(Wa) au .(a) (4a t 4 a a j2

where Au measures the deviation of the 21r-kink velocity CLI+ I
from the power-balance value (21). The autocorrelation

function and the power spectrum of the process E() in and by performing the same analysis of Ref. 5, one gets
(25) are then easily evaluated by means of Eqs. (4) and the following linewidth expression:
(21). we write

irksT RA
R,0-Tt') , A1(8 -I °  R= , (35)

* 2u E0 00it
,k s T (26)

S,(W)=-- 2uEo"r'(u) (26) where RD ccau/ap, Rs cx u/p, and o is the flux quantum2 u9 h /2e (for details we refer to Ref. 5).

For small velocities (i.e., 17-0) we have from (23), IV. CONCLUSIONS

77(u) -. a 3 (27) It has been shown that the effect of a thermal reservoir
" on solitons and phonons in the sine-Gordon system in the

Then Eq. (25) reduces to a Langevin equation for u, presence of a#, -# dissipations gives an average ki-
netic energy of, respectively, 'kg T and by kB T per mode.

du The presence of the 03 term on the soliton is to decreasedi = - + !u +E(t) ( (28) its diffusion constant. Furthermore, we showed that the
above analysis in the case of the Josephson oscillators

By using (26) and (27), Eq. (281 is easily integrated by har- leads to the same linewidth expression as obtained in Ref.
moniceanalysis, this giving

moni anlysi, tis gvin 5 Finally, in closing the paper, we wish to point out that
S, () the above analysis can be generalized to dissipations of

&, (C) 6(9 type 60, with 6 given by the following differential opera-

N

from which it follows that Y, (- )"aD where D, (36)
-R.- dD, kaw -0 ax-cas ( a" .g (30)

S2 E0 In this case we need to replace the autocorrelation func-

The time average of the kine.. : energy in the Brownian tion (4) for the noise n (x,) by the following expression:
motion of the 2ir kink is then evaluated as k8 T

(E,, L)= Eo(u 2 ) -=- ks T • (31) (n (x,s)n (x',t')) =16- 6(0 - f')(x -x') (37)

From Eq. (29) a diffusion constant D for the 27r-kink
motion can also be derived as in order to get the correct results. Indeed one easily sees

that (36) and (371 will give little changes in the above re-
S E a(32) suits except for the substitutions of

a 3 (ct+jBkl-ao+ , aik " (38)

which is just the usual relation reported in Ref. 6 with a
identitcd with a +,6/3. The effect of the P dissipation on in the phonon case and
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no change in the linewidth expression given in Ref. 5 due RC(t -I') = (e (E.). (l))
to the presence of the /3 dissipation. Finally in Sec. IV we
give a short summary of the main results, including a =16(a+ 13k2) -- 6t-1) 4
brief discussion on the generalization of the above- E0
mentioned results to higher-order dissipative terms of the k9T
type Z a, D,"'O, with aCR, D. =a/ax, and m eN. S, (a,)- 6(a+f3k ) E0

!I. THERMAL PHONONS By identifying a+k 2 with a we see that Eqs. (I11)
In this section we consider the TSG equation (14), and (15) coincide, respectively, with Eqs. (3.91.

-0,, .- sin0--- l+a0-,0., +n~x~t) (5) (2.12), and (2.13) of Ref. 6. One can follow the ,anic
analysis of Ref. 6 to show that the average energy per

in the small-amplitude limit and with no solitons in the phonon mode is
system. Phonon modes 0 are seen as small oscillations (H.)kTt T
around the ground state 0= -sin-1i7 satisfying the
boundary conditions [This easily follows by solving by harmonic aiialysis Eq-

1 (6) 0 1) and by using Eq. (9).] It is worth remarking liac thi%
result does not depend on the particular boundary condai-

The field O(x,t) in the small-amplitude limit can be writ- tions used, nor on the smallness requirements of u, (3, and

ten as 17.

(x,t -- sin -(,q)+ (x,t) with 11011 << . (7) I1. THERMAL SOLITONS

In this section we concentrate on the effect of the (f, fl,
By substituting (7) in (5) we get the following stochastic -q, and n (x,t) terms in Eq. (5) on an unperturbed sinc.
equation for'thermal phonons: Gordon soliton

0. =,, -(1-71 1)1/20+a(t-od/ +n(X,t) . 8) €=4tan-1exp[y(u)(x -ut)] , (7

When a=O, P=0, and n(xtl-0, these phonons are just y(u)(IiA)

classical Klein-Gordon modes with energy given by Note that the q in (5) shifts the ground state from 0 to
-sin-17/; therefore a soliton in our system should he scen

HP =L Ldx[, +V.,+0,(! -72 )1/2] (9) as a 2" kink from -sin-iq to 2m-sin- 17.
h 16 0 An equation of motion for the perturbed soliton can be

easily obtained by defining the momentum
(here L is the length of the system). The general solution ea
of Eq. (8) can then be expressed in terms of the complete P = - 4f1 #,dx
set 0. of orthonormal Klein-Gordon modes as

and differentiating it with respect to time, this giving

O5x,) A,(:),.Wx= Vi2iE A.(t cos(k.x) (10) dP _-

with k. =n*/L and V2 just a normalization factor, where
Inserting (10) in (8) and projecting the resulting equation
along the unperturbed eigenstate we get {t)--f n (xt)dx . 20)

A +(a +flk)A,., +s+Aa ,(t), (M1) With neglect of thermal noise, Eq. (19) has stationary
21r-kink 0'" solutions moving with the power-balanc %.c-

where locity u0 , for small perturbations, satisfying"

E.,() V 2 'L f n U ,t) cos(k x)dx (12)
an )x(1) f.~l2)/2 -u) -- = t21+

and 
4

(13) and with momentum

By using (4) we obtain for the autocorrelation function P 0=uy(u) -

and for the power spectrum of the normal process E.(0) In the stationary case, the integrals in Eq. (I1) c.l hc
the following expressions: written as

-u' ddx =-u aYJu)+ ,(u) -- 702,

8 J mmemn a II 4i I
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Stability of fluxon motion in long Josephson junctions at high bias
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In long Josephson junctions the motion of fluxons is revealed by the existence of current steps.
zero-field steps, in the current-voltage characteristics. In this paper we investigate the stability of
the fluxon motion when high values of the current bias are involved. The investigation is carried on
by numerical integration of the model equation, the perturbed sine-Gordon equation, simulating
junctions of overlap and annular geometry. A detailed description of the mechanism for the switch-
ing from the top o the zero-field step for both geometries is reported. Moreover, the effect o the
various dissipations and o the junction length on the switching-current value is investigated. A
simple boundary model is able to describe, for junctions of overlap geometry, the qualitative depen-
dence of the switching current on the system parameters.

MS code no. B13799 1988 PACS number(s): 74.50. + r, 02.70. + d

1. INTRODUCTION ular when all the perturbing terms are small, but it fails
in describing extreme situations such as the ones where
the stability of the traveling solutions at high bias values

It is well known that Josephson junctions can support, is involved. In fact, the perturbative approach is unable
under appropriate conditions the motion of magnetic to predict the maximum current amplitude of the ZFS's,
field quanta (fluxons). The evidence of such motion is ob- i.e., the maximum dc bias current that can sustain fluxon
served experimentally as current singularities [zero-field propagation. The simplest power-balance perturbative
steps (Z:S's)] in the current-voltage characteristic and as scheme3 predicts an infinite step current height, while the
microwave emission, in junctions having physical lengths perturbative scheme proposed in Refs. 4 and 5 predicts a
bigger than the Josephson penetration length A.1 Since maximum normalized step height equal to one. In con-
1973, an attempt has been made to explain the observed trast, experimental and numerical results, by various au-
phenomena in terms of oscillatory solitonic solutions of thors, typically give a maximum step height between 0.4
the "perturbed" sine-Gordon equation (PSGE) describing and 0.8. The main reason for the failure of the perturba-
the elcct rodynamic of a Josephson junction.:For a unidi- tive approach is that, being based on solutions of the pure
mcnsional geometry and in normalized units it has the sine-Gordon equation, it is not valid when the perturba-
form -Z ( *,., .. tive terms [the right-hand side o Eq. (1)] become large,

,sin - .- () as occurs when bias values that are not small are con-
sidered.

Here. 0 is the usual Josephson phase variable, x is dis- Since the question of the maximum current amplitude
lancc along the junction normalized to the Josephson of the ZFS's is of considerable practical importance to
penetration length XJ, t is time normalized to the inverse the experimentalist, and since no completely adequate an-
ot the Josephson plasma angular frequency wit, a is the alytic or perturbative approach is presently available, we
normalized shunt conductance that takes inVa account propose in this work to furnish a detailed numerical
tunneling of normal electrons across the junction, P is the study of the question, with the hope o providing a
normalized real part of the superconductor surface im- springboard for future theoretical work. We note that a
pedance, y is the dc bias current normalized to the step in the same direction has recently been taken by
Josephson critical current, and the subscripts indicate Zhang and Wu.7 With respect to their work, our work (i)
partial derivatives. Equation (1), together with the ap- considers junctions of both annular and overlap
propriate boundary conditions, determined by the partic- geometries," '3 (ii) describes in detail the instability mecia-
ular junction geometry employed, gives a very good nism for both geometries, and (iii) employs more than one
description of the observed dynamical behavior ot the numerical scheme, which in turn, (iv) pinpoints a numeri-
junct on, often to a surprising degree of accuracy. It has cal pitfall to be avoided. Like Zhang and Wu, we limit
to be noted, however, that since exact analytic dynamical attention to dynamic states involving a single propaga-
solutions of Eq. (1), are, in general, not known, all the in- ting fluxon. Moreover, we shall not consider, in this
formation is obtained either by direct numerical integra- work, the effects of intrinsic and extrinsic noise and of
tion of Eq. (i), or by perturbative methods based on the barrier spatial nonuniformitiesI on the stability of the
known analytical solutions of the unperturbed sine- fluxon oscillations. The reasons for this choice are based
Gordon equation (a=[3=y=0 in Eq. (1)], or by some on the facts that the cited effects, although often impor-
other approximation scheme. tant in physical devices, can always be reduced by a care-

The perturbative approach is very useful in describing ful shielding of the junction f-or electromagnetic in-
the overall dynamics of fluxons in the junction, in partic- terferencejby lowering the working temperature and by



improving the fabrication processes. Then the maximum .. 1 .si (6.
performances will be determined by the intrinsic instabili- °
ties of the fluxon oscillations, which are the subject of
this work. -n X

In Sec. 11 a description of the numerical methods used +,U. +(a. I I sin#cos Jx
is reported. Junctions o annular geometry and of over-
lap geometry are then analyzed in order to identify the n= 1,2..... N , (6b)
ranges of stable fluxon motion in each case. Finally, a 2-1 n ''
qua..ianalytical model is presented which gives reasonable 0. + ,, + W. I fl sino sin dx
qualitative agreement with the numerical results for over-lap geometry junctions. n= 1,2,..., N . oc)

II. NUMERICAL METHODS Here w, =(nrr/fl, it =a +(2.13 and overhead dots denote

In order to numerically solve Eq. (1) with the appropri- The set of equations (6) is solved using a sixth-order
ate boundary condition, two different numerical schemes Testo qain 6 ssle sn it-re

have been employed, One is based on a Fourier-Galerkin predictor-corrector method with variable step size.,'
while the right-hand sides of Eqs. (6) are evaluated byfast-Fourier-transform routine.' The accuracy of the

IVnr numerical integration was checked by decreasing the
,,(Xt)iix+0'(i)+ Wt)cos time step and by increasing the number of spatial har-

-I monic components considered. A typical value for the

{ / time step was At =0.05 while a choice of a number of
+,(sin ... , spatial harmonics equal to twice the junction length was

always appropriate.

(2) The other numerical scheme employed was an implicit
finite difference methodiZ where the phase 0 is restricted

where the 0(t) and 0.,(t) are unknown functions of time, to a square mesh
I is the normalized junction length, and 71 is a constant ,.,. • .
chosen to take appropriately into account the boundary (- A .7)

Aconditions. For the annular geometry junction the The derivatives in Eq. (1) are approximated by a second-
boundary conditions are order Taylor expansion in the step size, with a time aver-

I +, r. f" age over one time step for the x derivatives and inserted

6(X1- , +2mr, (3) into Eq. (1). The boundary conditions are handled by in-
troducing virtual extra points at the edge of the mesh inthe usual way. A predictor-corrector loop is used to

where in is the difference between the number of fluxons the onlieAret r in in in ti

and antifluxons present along the junction (since the junc- evaluate the nonlinear term in Eq. (1), enhancing in this

tion is a closed loop m is a conserved quantity). In this way the stability of the whole scheme. Finally a set of
cas alinear algebraic equations with a tridiagonal coefficientcase, matrix is obtained in the form

2rm (4) Ax=y , (8)
where

For the overlap geomet'y junction the boundary condi- x=(€T+i .... ,=0 +1) (9)
tions are and y is an appropriate function of the phase values at

the mesh points and previous two time steps. Equation
d,(0,i)=1 (,, 1=(7 5) (8) is solved by the "double-sweep method 'iZ which has

been demonstrated to be stable as long as the matrix .4 is

where now 71 represents the normalized value of the diagonally dominant, i.e., in this case
external magnetic field along the y direction in the junc- 3(+A:)
tion plane. Moreover, the boundary conditions [Eq. (5)] a(Ax)0+2(Ax))/At+23+2At
impose that 0,,=0 for all n. All the results obtained

herein are referred to the case where no external magnet- Again the accuracy of the results has been checked by
ic field is applied. halving both the space step Ax and the time step At. Al-

Although other geometrical configurations are possi- though it may seem exaggerated to use two different nu-
ble, only the above two have been considered because merical methods to solve the same equation, this was
they are the most useful for the understanding of the very useful to test the independence of the numerical re.
junction dynamics."Inserting Eq. (2) into Eq. (1) and us- suits on the scheme used. This fact is very important
irg the orthogonality of the trigonometric functions, the when dealing with dynamical states parametrically driven
folio.ing set of differential equations is obtained: to unstable regions. Another point to consider is that, al-
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FIG. I. Time evolution of the first four mode speeds. The
modes considered are the Oth (solid curve), the Ist (dashed of the fluxons with the boundaries; thus the resulting dy-
curve), the 2nd (dash-dotted curve), and the 3rd (dotted curve). namics is smoother. Moreover, since junction normal-

ized lengths I >> I are always considered, the motion of a
single fluxon on an infinite Josephson transmission line is

though the finite difference method seems to be more well approximated. This allows a reduction of Eq. (1) to
efficient for long junctions, the multimode method is able a third-order ordinary differential equation (ODE) for tle
to give more physical information about the dynamical traveling phase profile, reducing the problem to the study
states investigated. For example, looking at the phase ye- of a low-dimensional system.
locity of each mode in annular junctioris very useful to In Figs. 2-4 .the initial condition of the fluxon line
determine whether or not stationary motion conditions shape proposed by Ferrigno and Paces is used,
are achieved. The mode phase velocity is defined as € 0 x,t-sin-y+4tan- expI " -u 0 t)]

u.= FA(4i, ) ' (1!) X( I _y 2 )1 4 /( l )I

(12)
where F,( Y) is the nth component of the spatial Fourier
transform of Y. This definition is based on the idea that where uo is computed from power-balance considera-
each Fourier component of the phase travels with a tions3

modulating velocity u,,rwhich is slowly varying on the
time scale of the time step used in the integration scheme.
In Fig.,,I a plot of the time dependence of the phase ve-
locity of the first four modes is shown for the case of an k
annular geometry junction with I = 16, c=0. 18, 1=0.01, speed
y =0.89, m = I. The parameter values correspond to the
top of the first current singularity and the time evolution 1.000-
shows how the fluxon solution becomes unstable and
breaks down at the time t-35. In fact, as long as the
fluxon is stable and travels along the junction, all the 0.995-
modes have the same velocity, the fluxon velocity,
whereas when the solution becomes unstable it undergoes
transitory state where all the modes behave differently 0.990 *.

and finally reaches a new stable configuration where
again all the modes have the same velocity (not shown in 0.985
the figure).

Ill. ANNULAR GEOMIFTRY 0.980 -o 10 20 :30 4'0

In this section a study of the mechanism for the time
switching from the "fluxon" state (ZFSI) to the "rotat-
ing- state (McCumber branch) is carried out forjunctions FIG. 3. Stabilization of the fluxon after a bias change illus-
of annular geometry. The choice of the annular geometry trated by the first four mode speeds as in Fig. I. a=0.18,
is made because in such a system there are no collisions ,3=0.1, y=0.85, and! = 16.



4u0  1 l- 1131 particular numerical code used.
Y - )1 3 13 When the 3 losses are absent,13 a constant speed u i'

0/ + 0 found for all values of y less than one. If a small a3 Io), is

present, i.e., 1O<<a, a constant speed u is not found for Y
,-, In the limit y--0, uo assumes the value found by values very close to one. For y> I there are no more

.. McLaughlin and ScottO' After some time the solution re- static solutions of Eq. (1), therefore, a solution of fluxon
laxe5 toward a fixed profile traveling with a constant structure is not possible. This leads to the first kind of
speed u. The value of u is determined either by a mea- switching mechanism. It can be described as the di%Ip-
surements of the mode phase velocities, or by a direct pearing of the stable equilibrium solutions of nq. , i?,
me.asurement of the nluxon position, depending on the which form the asymptotic state of any fluxonlike solu-
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FIG. 4. Time sequence of the switching. (a) r=25; (b) t=50; (c) t=55; (d) t=60; (e) t=65; (f) t=70; (g) t =75.
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FIG. 4. (Continued).

tion. In terms of the chain of pendula analog, this corre- The presence of the perturbative terms in Eq. (1) intro-
spond to the starting of a uniform rta"on of all the pen- duces a modification or the fluxon line shape from the-J dula. If Ref. 14, Burkov C1 )D have manle a detailed sta- sine-Gordon one.' The modification becomes more pro-

bility analysis of Eq. (1) with 13=0 and with periodic nounced for increasing bias values. In Fig. 2 the numeri-
boundary conditions corresoondina to an annil-- cal results for the x derivative of the fluxon line shape are

,'5 geometry junction. Their results also reveal stability of shown. The parameters are: a=0.05, 3=0.02, 1 =8,
the fluxon when y < I. The same result is found in Refs. y=0.75 (solid curve), and y=O.8 (dashed curve). The
15 and 16 for a fluxon in an interval extending form - co main difference from the sine-Gordon form of the fluxou
to + cc. However, the stability analyses in Refs. 14 and line shape in Fig. 2 is the presente of an overshoot at the
17 are valid only when the # losses are absent. We shall trailing edge of the fluxon. The overshoot is present
show in the following that the effect of the 10 losses is to when the surface impedance term f3 is not negligible and
decrease the critical value of y for which a stable fluxon is more pronounced at high bias. In the following we will
motion can occur. show that it is just the presence of the 13 term in Eq. (1)



that limits the maximum bias current that sustains the 0 =sin-1 y±2jir, Otj-0, O(1.j=0, U16a)
fluxon motion in annular junctions.

In order to determine the critical current values for the O'P =i'-sin-'r±2k', #O. =0, 0f.k -0. (16b)
- switching, the following numerical procedure has been

followed. At the beginning, Eq. (12) is used as initial con- The s ing to soio n of E , c sps o i
dition with a value of y relatively small (in order to be in curve connecting the points ,P/ and €P1+ 1, as is shown in
a stable region). After some time of integration, y is in- Fig.5. Since the overshoot occurs near the 'P point, a

, creased slowly (with a time derivative <1I0 -3) to a new linearization of Eq. (15) around this fixed point can pro-
value. T Eq. () is integrated fotme (typically 50 vide useful information on the character of the oscilla-

-- units) at constant y to allow a stabilization of the solu- tions forming the overshoot. Linearizing Eq. (15) around
tion. The whole procedure is repeated again until a OP gives - ,t,
switching is observed. The measure of the mode phase (l-u 2 )y (l-y 2 )2 yPauye- uyc1 , (17)

-- velocities is used to check that the fluxon has assumed a
stable profile. In Fig. 3 is shown the stabilization process where Ily 1 << 1. This equation has a general solution of
in terms of the time evolution of the speed of the first the form
four modes. As is clearly shown, all the modes tend rap-
idly to have the same speed, indicating that the fluxon Y=Ae +Be +Ce (18
has assumed a constant profile. When the critical value where A, B, and C are integration constants and X1, 2. ,r"

0 r,, - . is reached, 4he stabilization of the modes speed does and )Aare the roots of the characteristic polynomial:
not take place and a switching is observed. thi

In Figs. 4(a)-4(g) a detailed time sequence of the - U2 X+-E+ (I l9)/
switching is shown. The parameters are, in this case, fV u P flu (19)
a=0. 18, 0=0.1, 1=32, and 0. 89 :5;y 0.9. All the plots
are referred to a reference frame moving with the fluxon. Because of its structure, P) has always a positive real
The switching can be described in the following way: root and can have either two negative real roots or two

- First the overshoot at the trailing edge of the fluxon complex conjugate roots with negative real part. This
starts to grow in size and decreases its speed (Figs. implies that the fixed points are either saddle points or
4(a)-4(b)]; when the overshoot is large enough, it breaks saddle foci, as described by Hayashi'! Eq. (19T]Can be 2

- - in a fluxon-antifluxon pair, Fig. 4(b) (in this plot a fluxon solved by standard methods, obtaining^a fairly complicat-
is represented by a positive pulse and an antifluxon by a ed expression for ?., k2, and X3. It should be noted, how-
negative one); the new fluxon starts to move forward and ever, that the solution of Eq. (19) has the speed u as an in,

- bunches with the original one, while the new antifluxon dependent parameter, while u is in reality a function of
starts to move backward, driven by the current bias [Fig. the other parameters a, /, and y. Since the exact relation
4(c)]; the process of nucleation of fluxon-antifluxon pairs for u is not known, only approximate results can be then
continues adding new fluxons and antifluxons [Fig. 4(d)]; obtained by this linear analysis. Assuming, for high bias,
when the group of fluxons meets the group of antifluxons u = 1, it is easy to compute that in order to have complex
which has traveled all the way around the junction, a roots, the bias must satisfy the following condition:11/2

__ multiple collision occurs [Figs. 4(e) and 4(f)]. These /4 (2
finding were briefly reported in Ref. 17. As a result a net y < I --L . (20)
energy loss occurs in each fluxon (or antifluxon) to such

._ an extent that they are not able to survive the next col- Since, for reasonable values of a and /3, the right-hand
lision and form breatherlike structures; these structures side of Eq. (20) is always very close to one, this condition
do not gain energy from the bias and relax down to the states that the oscillating overshoot, associated with the
.flat configuration: 0, 21r/1, 0, >> (Fig. 4(g)]. The complex roots of Eq. (19), is always present. In the samefinal state obtained (a uniform phase twist increasing
quickly in time) corresponds to the McCumber curve for
the annular junction.

The mechanism for the switching just described sug. % .
gests that the presence of the overshoot in the fluxon line
shape plays a vital role for the triggering of the switch-

-- ing. The qualitative behavior of the overshoot can be un-
derstood by studying the traveling wave reduction of Eq.
(I). With the following change of variables /

=X +U/ , (14) 2r; .. "

Eq. (1) reduces to

This ODE has a three-dimensional phase space with fixed FIG. S. Sketch of the phase space for Eq. (15). The fluxon
_ points solution connecting Oj to O I is shown.



way it is possible to compute the period T and the decay
rate p of the overshoot oscillations as

4

o113
T 2)1/6 (21) 50.

v'3 _l-y2)1/6

_r -Y(22)

" ~- where terms of the order of A/0 have been neglected.
The result from Eqs. (21) and (22) has been checked with
the numerical results, finding good agreement. However, T
because of the limitation mentioned above, this phase-
space analysis cannot predict the critical bias current
value at which the fluxon solution becomes unstable. A 00
qualitative explanation of the switching is nevertheless FIG. 7. Stable fiuxon oscillations corresponding to ZFSI in
possible. Perhaps a careful global analysis of the ODE, an overlap junction.
Eq. (15), may lead to a quantitative description of the on-
set of the switching.

the phase at successive times t during the switching star- 72'
IV. OVERLAP GEOMETRY ing at the arbitrarily chosen reference timee(=O. At

y= 0 .7 3 the fluxon oscillation is stable. Increasing y toIn this section a study of the mechanism for the the value 0.74 the fluxon becomes unstable and after a
- switching in junctions of overlap geometry is presented. couple of oscillations the fluxon hits the right-hand

Overlap geometry Josephson junctions with normalized boundary (1= 12) at time t-6 and during this reflection
lengths I >> I and without external magnetic field ap- it becomes unstable. Immediately after the reflection the
plied, i.e., i7=0, are considered. In Fig. 6 an experimen- phase has increased by 4w but is now unstable and it con-
tal current-voltage characteristic is shown, with six tinues increasing after the time t -14 leading to the for-
ZFS's. The first zero-field step (ZFSI) results from the mation of additional fluxons which travel from the right-
oscillation of one fluxon; the next step (ZFS2) corre-
sponds to two oscillating fluxons, etc. For all steps, at
sufficiently high bias current, the fluxon oscillations be-
come unstable and a switch to the McCumber curve 0(x,t)
occurs. The switching is indicated by the arrows in Fig. 320-
6. Figure 7 depicts the phase 0(x,t) of one fluxon per-
forming a stable oscillation back and forth at y=0.5, as

- obtained from Eq. (I) solved numerically. The parameter 310-
values used are a=0.05, 0l=0.02, and 1=8. An
overshoot behind the fluxon is clearly visible. Increasing
y to 0.7 the fluxon becomes unstable and a fast spatially 300
uniform rotation emerges after a short transient. In Fig.
8 this transient motion is shown in more detail for a junc-
tion of length I=12 and with y=0.74 using otherwise 290
the same parameter values as in Fig. 7. Figure'8 displays 0 2 ' 6 5 1b 1'2

J 500

0(x.t1) 38
f4 450- 36
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zs5I 32

7 400-30f 28
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FIG. 6. Experimental I-Vcharacteristie~fa long Josephson FIG. 8. Time sequence of the switching. (a) 0.[ trfl IB. (b)
junction of overlap geometry. Six ZFS's are shown. 18(.,(3S. VI



hand boundary towards the left-hand boundary. At time time t and using Eq. (1) together with the boundary con-

/1 t - 18 these fluxons are reflected V& the left-hand ditions, Eq. (5), it is easy to obtain

boundary and annihilate the incoming ones. Eventually dH T  .

the phase develops into the spatially uniform rotating =pr+P.+PJY+7l[O'lt)-0o(Ozt)] (24)

solution as can be seen from Fig. 8(b). From Fig. 8 it is dt 71
evident that the fluxon is destabilized at one of the boun- where the power input and output have been

daries during a reflection and thereby triggers the forma- cording to

tion of successive fluxons which unwind during the nextreflection at the opposite boundary Tesmfidnpr=+foY-O,dx, - .

- has been reported by Cirillo et al.1 from a study of the
mechanical analog of the long Josephson junction. P a-*, ) dx (256) ,

The switching can be illustrated also in terms of ener- f

- gy. The sine-Gordon energy s of the junction is P6 ' -,6(0,)'dx • (. "

T (23) Note that the terms P. and P9 extract energy from flux-
ons or antifluxons whereas the term P. is an energy.

In terms of the pendula model, the first term in Eq. (23) is injection term which accelerates fluxons and antifluxons

the elastic energy arising from the elastic coupling be- in opposite directions.
tween the pendula, the second term is the kinetic energy, Figure 9 shows the time evolution of the total energy

- and finally the term in (I -coso) is the potential energy and the power input and output terms in Eqo(25). Using

measured from the static downward equilibrium state. In the parameter values a=0.05, 0=0.02, and I = 12, Figs.

the case where the dissipation and the external bias are 9(a) and 9(b) depict the total energy and powers in the

- absent, Eq. (1) reduces to the pure sine-Gordon equation case of a stable fluxon oscillation at y=0. 73 just below

which can be written as a Hamiltonian system with the the critical bias current y,,. Over one period of oscilla-

Ilamiltonian given by Eq. (23). When the perturbative tion the totpl energy remains constant and the power in-

_- terms are present, 1t is merely the total energy of the put balancethe power output. During a reflection at one A

system. By differentiating Eq. (23) with respect to the of the boundaries a fast 4r change occurs in the phase 46

4,- 6

TH..................................................... .........

43- 2-

0-

42 -- - - - - - - - - - - - - Ph

41 -
"- . .. - 0 ,-6 tm

505 510 515 520 525 530 505 510 515 520 525 530
time t time I

800- 100-

H T P . Y

600- 50-
... ,......"''

4oo - 0---------- ........ -- --

200 -. -50-

0, -100 ,

560 570 580 590 600 610 560 570 580 590 600 610
time t time t

(d (d) im
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and the dissipation from both terms in a and P increases. I (I-u 2 )1 28

This results in a pronounced dip in the total energy dur- ]"= 2)1/4
ing a reflection. It is important to note that this energy f.

- loss at the boundaries is purely dissipative and is not a re- and the velocity u may be determined by the single fluxon
suit of radiation from the junction end. Such radiation is power-balance expression of Eq. (13). Thus Eq. (26) be-
not accounted for in this model. In Fits. 9(c) and 9(d) r comes
has been increased to the value 0.74 where switching 0,+ao,+sin0=y+00 (x=O)+POO°(x-0) (29)
occurs (see also Fig. 8). During the switching the total X A 0

energy significantly increases, as does the loss due to the where
- a term. Eventually the system approaches tjie spatially

uniform McCumber state and accordinglyo"[e loss due 02°(x =0, t)= -4uf- sinh(uU't) (30)
"- to the 6 term vanishes. When equilibrium has been u 2 +sinh(ur-It)

- reached on the McCumber solution the averaged total en- and
ergy will again be constant and over one period of oscilla-
tion P. will balance P.. This equilibrium state is not 0°,r.(X =0,t)
shown in Figs. 9(c) and 9(d). -4u 2 r-coshcu F't)[u~sinh2 (u r-it)]

[u 2 +sinh 2(ur,..,1) (31)
V. STABILITY ANALYSIS -
BY BOUNDARY MODEL Equation (29) has a static solution 06 =sin (y) as t--o -

corresponding to the configuration of the x =0 pendulum I
In this section a boundary-based model is introduced in the mechanical model when the fluxon is still far away.

to explain the switching from the ZFS's to the When the incoming fluxon reaches the x =0 point (t -0)
McCumber curve in the overlap geometry Josephson the right-hand side of Eq. (29) changes very fast leading
junctions. The phenomenon of the switching in overlap to a 4tr increase of the phase. After the fluxon is reflected
junctions appears to be related to some instability that (t -. + w), the phase can either relax to the new equilibri-
takes place at the junction boundary. This was first um state 0=sin-1(y)+41r or go to the rotating state cor-
pointed out by Cirillo et a. 'o from observations on the responding to the McCumber solution of the simple pen-
mechanical analog of a Josephson junction. The same dulum. The first case will correspond to a "normal"
idea can be deduced by a careful analysis of Figs. 7 and 8. reflection and to the stable dynamical state of the ZFS's,
I n fact in Fig. 8a) it can be seen that .the reflection of the while the second case will correspond to the switching to
fluxon that occurs at I -6 does not leave the boundary in the McCumber branch is shown in Figs. 8 and 9. The
a static phase configuration (0=sin-' y +2mcr) as occurs value of the bias -r that corresponds to the transition
when stable fluxon oscillations are observed (Fig. 7). A from the first case to the second one will then be the one
way to analyze this phenomenon can be to study the dy- that determines the switching from the ZFS's to the
namics of the phase at the junction boundary (say at McCumber branch. In Fig.. 10 the time evolution is
x =0). In terms of the chain of pendula analog of the shown of 0 and of €, for different V values (curves 1-51
PSGE this corresponds to studying the dynamics of a sin- obtained by a numerical integration of Eq. (29). It can
gle pendulum, namely the last of the chain, under the
fluxon-antifluxon collision that describes the process of
reflection of a fluxon at the junction boundary. Follow-
ing this idea one can rewrite Eq. (1) as

h ,,i+as , +sin0=y+0.+0., . (26) 016 3t 6 0

This equation can be viewed as the equation of a single 14-1 50"
pendulum [he left-hand side of Eq, (26)] driven by an 12- 40"
effective force [the right-hand side of Eq. (26)]. This 10-0
effective force is made of the external bias y and the cou- 30
pling to other pendula of the chain + The 8 20
problem here is that the effective force is not known, be- 6
ing dependent on the solution 0 of the same equation. A 105
reasonable approximation may, however, be given by the 10
analytic expression for the fluxon-antifluxon colision 2-0
solution of the sine-Gordon equation, which can be 01-1
rewritten in a form that takes into account the perturba- -10 .

trminE.()4 a .-5 0 5 10 15 20 -5 0 5 10 15 20tive terms in Eq. (26) as .

0" i-y+ a-Iin I-- rec - 1 (a)7(b
n 4 - 1sech , (27) FIG. 10. Time evolution of 0 (left) and 0, (right) for the

boundary model. The curves labeled 1-5 correspond to bias
where r" is the corrected Lorentz factor introduced in Eq. values from 0.90 to 0.98 in steps of 0.02. The switching occurs
'12) as at y =0.95+0.0I-a=0.0S,6-0.02, and I='a.



clearly be seen that curve 3 (corresponding to y=0.9 4) is once again, our curve a is quite similar to that shown in I
the last stable state and a further increase of y leads toI Fig. 4 of Ref. 7.
the switching. j Figure 1 (c) shows the ,l dependence, for a =0.05 and

J I = 12, of y,. for the same three cases as before. As be-
V1. RESULTS AND DISCUSSIONS fore, curve a lies below curve b. Comparing our curve a.

I however, with the curve shown in Fig. 5 of Rdf. 7, a
Our results are summarized in Fig. 11. Figure 11(a), significant difference is apparent: our result indicates

curve a, shows the length dependence of the critical that y,, tends smoothly to I as 3-0, whereas Zhang and
switching vale of y for overlap junctions with a=0.05 Wu's curve bends over and terminates near -y=0.7. In

A and 3=0. 0 2 A Curve b is the I-.oo limit for the switch- this connection, we comment that the implicit finite i
ing value in annular junctions having the same loss pa- difference routine of Ref. 12, used also by Zhang and Wu,
rameters. As can be seen, the critical y for overlap junc- was developed specifically to integrate Eq. (1) with ,0e0.
tions tends asymptotically to a value lower than that for In fact, for 03=0, Eq. (1) is a second- rather than third- "
annular junctions. In passing, we note that curve a is order equation, and much more efficient explicit algo-
quite similar in form to, but slightly higher in current rithms are available.2 t Our experience indicates that for
than, the curve shown in Fig. 2 of Ref. 7 (nominally the 6-0 this implicit algorithm must be used with great
same problem). In this connectjon,, we comment that the care. Even though condition (10) is satisfied, unless very

-) value of y,. obtained dethSf ather sensitively on how y small spatial and temporal increments, Ax and At. are
" _ is increased during the computations: the more "adiabat- used, the algorithm tends to generate spurious oscilla-

ic" the increase, the more accurate the value of y,. tions which can completely falsify results.
Figure I 1(b) shows the a dependence, for 3=0.02 and As is apparent from Figs. 1 (b) and 11(c), the boundary

I = 12, for overlap junctions (curve a), annular junctions model, curve c, gives a good qualitative description of the
A% (curve b), and for the boundary model (curve c). Once a and P3 dependences of the computed y,, values, curves

again, it is apparent that overlap junctions switch at a. The essential difference is an almost constant shift of
lower current values than do annular junctions. And about 0.15 in y. This remarkable result strengthens the

1 0 1.0:
o-1

09- 0.9- C
08 0.6-

077 -4/0.7

,/ / o

2 6 681l2 CD a-os 02

aS.
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FIG. 1I. (a) Dependence of the critical bias on the junction length. a overlap geometry. b annular geometry (I- a ). a 0.05 nd
0=0.02. Ib) Dependence of the critical bias on a. a overlap geometry, b annular geometry. c boundary model. 0=0.02 and 1=12.
cI Dependence of the critical bias on j9. a overlap geometry (= 12). b annular geometry. cboundary model. a=0.0S and, = 12.



idea suggested by the numerical simulations that in long fluxon solution becomes unstable.
junctions of overlap geometry the switching phenomenon In the overlap geometry junction the disappearing of
is connected to an instability that is generated at the the fluxon oscillations is due to an instability that is
boundaries after the fluxon-antifluxon reflection. The al- originated at the junction boundaries after a fluxon.
most constant shift between the results of the simple antifluxon reflection. This instability causes a switching
model Eq (29) and the ones from the complete model Eq. to the McCumber curve for bias values lower than the
126) is fully due to the choice (27) for 0. In fact, as has ones required in the annular geometry case. However,
been shown in the preceding sections, the sine-Gordon the dependence of y,. on the parameters a and ,6 is simi-

%',J solutions are not anymore a good approximation to the lar for the two geometries. The dependence of y,. on the
- solution of Eq. (26) at high bias values. Indeed, using in junction length shows a saturation for I > 10, to a value

Eq (29) a numerical solution of Eq. (26) for 4/opue
. q (9} nuerial oluionof q. 26)for€ computed smaller than the corresponding one in the annular Junc-r

in a stable state close to the switching (a=0.05, 0=0.02, tion case [Fig. t (a)].
y = 0.7, 1 = 12) the correct switching value for y is corn- A simple model, based on the simulation of a fluxon-
puted (y,.= 0 .7 2 ). antifluxon reflection, is able to reproduce qualitatively

the numerical results. An analysis based on the Floquet
theory supports the idea that the switching is due to a

VII. CONCLUSIONS parametric excitation of the Fourier components of the

In this paper we have addressed the problem of the sta. phase31 However, since all the components are involved
bility of the fluxon motion at high bias values. Two in the process, it is not possible to obtain analytical ex-

different geometrical configurations have been con- pressions for the critical bias values.
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Abstract

We use the method of ccl-to-cell mapping to locale attractors, basins, and saddle

nodes in the phase plane of a driven Josephson junction. The cell mapping mcthod is dis-

cussed in some detail, emphasizing its ability to provide a global view of the phase plane.

Our computations confirm the existence of a previoulsy reported interior crisis. In additon

we observe a boundary crisis for a small shift in one parameter. The cell mapping method

allows us to show both crises explicitly in the phase plane, at low computational cost.



1. Introduction.

Strange attractors of a periodically driven Josephson Junction are studied numcrically

by means of simple cell mapping . We focus here on the sudden changes of strange

attractors, which may occur when some parameter values are altered. These changes are

called crises 2- . Two different types of crises are discussed, namely the boundary crisis and

the interior crisis.

Following the notation of Grebogi 2.3 et al. we call the collision of a stable chaotic

attractor with an unstable periodic orbit at a basin boundary, a boundary crisis. Boundary

crises result in the sudden annihilation of the chaotic attractor. In contrast, an interior crisis

arises from a similar collision of attractors from within a single basin. In this case the chaotic

attractor has a sudden expansion in phase space.

We have chosen to study the driven Josephson junction for a range of parameters al-

5.6
ready studied by Kautz . Kautz has found two crises, one at each end of the paramtcr

range, and he has identified one as an interior crises. We confirm this result, and. show that

the other crisis is a boundary crisis.

To study numerically the global behavior of the Josephson junction it is advantageous

to use cell mapping methods '7 o. We shall use only the simple cell mapping algorithm

where the 2-dimensional phase space is divided into rectangles or cclls and the governing

dynamical equation defines a way to map each cell onto another in the phase plane. A more

elaborate cell mapping method is the generalized cell mapping procedure . Here it is allowed

for a mapping of a cell to have multiple image cells with appropriate individual mapping

probabilities. In Ref. 9 the two above cell mapping methods are combined into "compatible

simple" and "generalized" cell mapping.

The organization of this paper is as follows. Section 11 briefly introduces the dynamical

equation of the system under study. including parameter values. Then the concepts of the

. .. ... . -m uumnm m li tin Imnlii ' m n .



cell mapping method arc developed, and some of its limitations arc pointed out. Section UI

presents the computed current-voltage (I-V) curve for the parameters of interest, along with

a I dimensional Poincare map. These were the tools used by Kautz in his investigation, and

we repeat them here both as confirmation of his work, and to provide benchmarks for our

cell mapping study. Section IV uses cell mapping and Poincare sections to identify parame-

ters for which a boundary crisis occurs, and to locate in phase space the relevant attractors.

Section V extends cell mapping to compute basins of attraction, and manifold crossings.

Both the new boundary crisis identified in Section IV and Kautz's interior crises are studied.

MI. Model Equation and Numerical Method.

The equation describing the dynamics of a driven Josephson junction is given by 11

+ a¢k + sin, = 71 + Asin(wt) (1)

Here ovcrdots denote derivatives with respect to time t. p = (t) is the phase difference

across the junction, a is the quasi particle damping term, given by a = I /v'r "f, where 9 is the

McCumber parameter t t , and 71 is the constant dc bias current. A and w denote the amplitude

and frequency of the external driving force, respectively. Only the il-term has been varied

and the other parameters have been fixed at the values: a = 0.2, A = 10.198039 (for com-

parison with ref. 5), and w = 1.0. The dynamical equation (1) is solved numerically using a

fourth-order Runge-Kutta algorithm. The solution may be displayed in the phase plane as a

Poincare section where points (o,(t), ,(t)) are plotted after every period T = 2r-/w of the

drive cycle. Here -0(t) is treated modulo 2-r, from -ir to 7r. The Poincare map gives a good

geometrical view of the dynamics by which we can identify the diffcrcnt attractors. To study

the global behavior of the system, the basins of attraction of the different attractors must

be found. To do this by solving Eq. ] numerically with initial conditions distributed uniformly

3



over a finite subset of the phase plane is a very time consuming procedure. A more efficient

way of getting thc basins of attraction is to use the cell mapping method 1 - .

In the cell mapping method we dividc an interesting subsct of the phase plane into cells.

Let us for simpLicity introduce the notation A - x, and , = x2. A finite rectangular subset

of the 2-dimensional phase space of Eq.1 is then divided into N rectangular cells. We shall

use uniform cells of width h t and height h2. If N3 denotes the number of ceLls in the xt-di-

rection, and L1 denotes the length of the subset in the x--direction, then h1 , -L/N 1 .

Similarly, we have for the x2 direction That h2 = L2/N 2. The ceils are counted sequentially

beginning, for examp!a, at the cell in lowest row to the left, counting along the lowest row,

and ending with the cell No. N = N, N2 in the uppermost row to the right. The i'th cell Z'

= (zI, z2 ), i = 1,2 ... N, is now defined to co'tamn all points (x t , x2 ) which satisfy

Z! - h < xi < z'!+ -Lhj j=1,2 .(2)

z!, j= 1,2, are the coordinates of the cemcT point of the i'th cell. To get a cell to cell mapping

we integrate Eq.1 over one period T of the external driving force using the center point Zi

of the i'th cell as initial condition. This is done for each cell i. The final state point after the

integration will lie either inside an existing cell which can be identified according to Eq. 2

0or outside the subset of interest. In the later case we shall introduce a sink cell, denoted Z

which then absorbs points escaping outside the region of interest.

By definition the sink cell is mapped into itself. To each cell including the sink cell we

have now assigned an image cell and the mapping so defined is dcnotcd C. Let Z(1) be an

arbitrary initial cel. Aftcr n applications of C, Z(1) is mapped into Z(n) and we write

Z(n+ 1 )=C(Z(n)). The evolution of the system can be periodic in the sense that a cell Z is

mapped into itself after K applications of C. Such a motion is called K periodic or a P-K

4



motion. The K different cclls traversed in a P-K motion form a periodic group and the cells

belonging to this group arc called P-K cells. The cells which eventually are mapped into this

group through repeated application of C belong to the basin of attraction of this P-K group.

The evolution of the system from a given ini.tial cciU can lead to only three different

outcomes. 1) The initial cell is itself a periodic cell, 2) the initial cell belongs to the basin of

attraction of a P-K group, or 3) the initial cell is mapped into the sink cell. This elementary

analysis forms the basis for a very efficient unra-'elling numerical algorithm designed by C.S.

Hsu et. al. in Ref. I. This algorithm has been used here to determine all regions of attraction

and their basins of attraction for Eq. 1. in a given subset of phase space..After having made

the discretization into cells and determined the cll to cell map the system dynamics have

been reduced to simple sorting of integers which requires only a minimum amount of com-

puter resources. However, the simple cell mapping procedure has to be used cautiously. The

reason is that the discretization introduces errors which result in qualitative differences from

the original system. The cell map may find periodic groups which correspond to unstable

attractors in the continuous problem. Some periodic groups with a high period may corre-

spond to a chaotic attractor, or several groups may represent different parts of the same

attractor in the original system. These errors can be ameliorated by using finer grids or by

using the refined cell mapping procedures described in Refs. (8-9), but they arc inherent in

the discretization of phase space used in cell mapping.

ITT. Interpretation of the I-V characteristic in terms of crises.

Before applying the cell mapping procedure, we shall give an interpretation in terms

of crises of the part of the I-V characitristic shown in Fig. 1. This I-V curve was obtained

by numerically solving Eq. 1 and plotting the bias current I versus the time average < o >

which is proportional to the voltage across the junction. The same I-V curve (with the same

S a.I



parameters) has been published by Kautz '6 in another connection, hence a direct compar-

ison is possible.

In Fig. 1 q was varied from -q = 1.78 to 7 - 1.90 , and the other parameters were fixed

at the values stated in the previous section. We focus on the vertical line scgmanet in Fig. 1

at ibe value '0 on the voltage axis. It can be shown that along this line 0 is phase-locked to

the osciUatory driving force. The question we address (and addressed by Kautz 5 ) is. how is

the phase lock destroyed at either end of this constant voltage step? Kautz was able to show

that the gradual departure at the top of the step is due to an interior crisis, but he left the

lower end unresolved. Note that the lower end involves a hysteresis loop, where the voltage

jumps back and forth between the step and some noisy curve as the current is changed very

slightly between q - 1.802 and - - 1.822. The hysteresis loop implies that two attractors

coexist in phase space, and suggests that a boundary crisis between these two attractors could

be involved.

This is shown more clearly in Fig. 2, where we have plotted 4(nT) from the Poincare

section at corresponding 7-values, where T denotes the period of the external driving

frequency. From Fig. 2 it is evident that a chaotic dynamic state exists in the Ti -interval

1.78<71<1 .822 and this chaotic state causes the erratic form of the I-V characteristic.

Coexistent with the chaotic dynamic state there is a simple period one solution in the

T1 -interval 1.802<Tj<1.822 . The associated piece of the I-V curve is phase locked and the

voltage V = <>= 10 is strictly constant. The phase locked state is characterized by the

relation (,(t + nT) 0 p(t) + 2mir and accordingly the voltage across the junction becomes

V= <0>-- - x - . In the case of Fig. 1 m=10 and n=1. i.e. the junction is lockedn T

on the step No. m 10. When -q is increased beyond 1.822 the chaotic attractordisappears

and only the period one or phase locked state remains. The reason for this behavior is ap-

parent from Fig. 2. Together with the stable period one state there exists an unstable perod



one hyperbolic point shown as a dashed curve and marked U-I. The unstable periodic points

shown in this figure and in the Figs. 4-7 have been located with the Newton-Raphson algo-

rithm described in Ref. 12. When the chaotic attractor collides with this unstable periodic

solution, a boundary crisis occurs and-the chaotic attractor disappears. After the occurrence

of this boundary crisis only the phase locked part of the I-V curve remains, as may be seen

in Fig. 1.

Thc interior crisis at thc top of the voltage step in Fig. I can also be discerned in Fig.

2. Here we see a Feigenbaum sequence with period doubling bifurcations when increasing

i? from 1.822 up to 1.888. At the first period doubling bifurcation we have m--20 and n=2,

at the next we have m=40 and n=4, and so on. This means that the junction remains on the

phase locked step number-- - 10, and even in the chaotic region, which follows the period

doubling bifurcations, the voltage across the junction remains constant. As the voltage is

determined as a mean value <k> , we cannot see from the I-V curve alone that the above

period doubling bifurcation followed by a chaotic window has occurred. However, at

7 - 1.883 a change in the I-V curve is again observed. The voltage V decreases and becomes

irregular. From the Poincare section we notice that an unstable period three orbit marked

U-3 and created at = 1.851, has collided with the chaotic region mentioned above. This

collision results in an interior crisis and accordingly the chaotic region expands suddenly,

filling out a larger subset of phase space. When this expansion occurs the junction is no

longer phase locked on step number 10.

IV. Cell to cell mapping and boundary crisis.

We shall now apply the cell to cell mapping to show in more detail the collision bctwccn

the unstable periodic orbit and the chaotic attractor in the q-intcrval [ 1.80 " 1.325 ]. Figs.

3a-c are phase plane plots approaching the crisis, and in Fig. 3d, the crisis has occurred. All
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of these plots show the conventionally generated Poincare maps as a multitude of tiny dots.

one dot for each cycle of the periodic driving force. The larger symbols represent various

periodic groups as found by the cecll mapping method. The small open circle labclled U-1 is

a saddle point as calculatcd by the Newton Raphson technique 2. No basins of attraction

are shown. The extended chaotic attractor made visible by the Poincare maps in Figs. 3a-c

disappears in Fig. 3d bccuase of the crisis.

The general trend to follow in these figures, is that as -q rises and we move from Fig.

3a to Fig.3b to Fig. 3c, a finger of the chaotic attractor moves toward the unstable saddle

point. When the finger touches the saddle point the crises occurs, and the chaotic attractor

disappears, as in Fig. 3d. The beauty of the cell-mapping method is first, that it can find

unstable attractors. and second that it gives us a measure of confidence that we are following

all the relevant attractors in phase space.

In the cel to cell mapping we have divided the subset [ -i" <x <-5rl x

C -27Y < x2 5 21rJ into NX x NY = 50 x 100 cells. In Fig. 3a -q equals 1.80 and only one

chaotic attractor exists at this 7,-value. However, in the cel to cel map we found 5 periodic

groups. For each or these groups the average voltage was calculated for the associated peri-

odic motion and the arractors were then sorted according to their voltages. In the original

system the voltage corresponding to a given attractor is an integer if biased on a phase locked

state. To each phase locked state there exists only one attractor. Thercfore, when using cell

mapping, we regard two or more attractors which are formally distinct as identical provided

their periodic mo~o give rise to the same integer voltage. In regions of chaos the chaotic

attractor wil result in voltages which arc non-integers.

The identification of chaotic attractors with periodic groups is a little more subtle. Due

to the finite number of ceils we can only gect periodic orbits when using cell mapping. How-

ever, we may identify a chaotic attractor with a periodic group if the group period is large

I a



and the corresponding voltage is non-integer. As in the phase locked case, formally distinct

cell map groups will be considered to belong to the chaotic attractor, provided the voltage is

non-integer. (This will be the case even if the voltages are not identical.) The only require-

ment is that the voltages are non-integer and that 'the Poincare map reveals only one chaotic

attractor for the parameter values under consideration."

As mentioned above we found 5 groups in the cell to cclU map at 77-1.80 (see Fig. 3a).

Two of these are a P-16 group with voltage V--.750 and a P-6 group with voltage V=8.501.

As the voltages are non-integer and as we know from the Figs. 1-2 that only one chaotic

attractor exists at 77= 1.80 the two periodic groups are artificially distinct and we shall regard

both of them as belonging to the chaotic attractor. In Fig. 3a these two groups together are

marked by crosses, and we observe that they fit well to the real attractor obtained from the

Poincare section. This means that the cell to cell map provides a fairly accurate picture of the

chaotic attractor even with suca a crude discretization grid as 50 x 100. Furthermore, the

cell map reveals a P-2 group, marked by downward pointing triangles, with voltage V=8.000,

(step 8), a P-I group marked by a solid square with V=9.008, (step 9), and finally a P-1

group marked by an upward pointing triangle with V=10.003, (step 10). These periodic cell

map groups have been found artificially, and they are not stable in the original model

equation (I). However, the above three steps or attractors are stable for 17-valucs nearby.

We believe that there arc periodic transients or 'shadows' of the above periods which the cell

map procedure picks up. This fact is useful when searching for attractors in a given parameter

region.

In Fig. 3b 'T is raised from 1.80 to 1.81 and from Figs. 1-2 two coexistent attractors

are present, a chaotic one and a periodic one with V=10. Six periodic groups have been

found by cell mapping. There is a P-12 group with V=8.498. marked by crosses, which is

clearly associated with the chaotic attractor. Three other groups, marked in common with

9



down pointing triangles are associated with a shadow of a nearby V-8 attractor. Finally cell

mapping produced two V= 10 attractors, in the form of a P-I group and a P-2 group marked

by up pointing triangles in Fig. 3b. The two circled triangles are the P-2 group.

Clearly, these last two groups correspond to step No. 10 in the continuous problem,

and arc not shadows. The P-I group coincides with the period one orbit (marked by a dia-

mond on Fig. 3c) obtained from direct numerical simulations of Eq.1. The P-2 group is the

unstable periodic orbit created at the saddle-nodc bifurcation at 71=802. It is easy to un-

derstand why the ceU map is able to pick up this unstable saddle point, If the saddle point is

approached along one of its two stable manifolds it will take very long time to reach :he

saddle point. Therefore a cell around the saddle or very close to it may be mapped into itself.

In this case two cells close to the saddle have been mapped into themselves and their posi-

tions indicate with good accuracy the position of the saddle point. This has been verified by

12the Newton-Raphson iteration procedure for finding fixed points . The exact position of the

unstable saddle point is shown by the small open circle in Fig. 3b.

In Fig, 3c 1 is raised to the value 1.82. The cell map procedure gives three periodic

groups on step No. 10, namely two P-I groups and one P-2 group. One of the P-I groups is

positioned at the unstable orbit and in Fig. 3c its position is marked by the lettering U-I.

We observe that the chaotic attractor (small dots) nearly touches the saddle point U-1. so

that we are close to the boundary crisis which occurs at i7= 1.822. The stable periodic orbit

determined directly from Eq.1 is marked by a diamond, and agrees well with the ceU map

result. Similarly the Newion-Raphson algorithm finds the unstable saddle point to be located

very close to the unstable point found by cell mapping. In Fig. 3c the exact position is shown

by a circle. Furthermore, the cell tocel map shows a P-22 group with V=8.634 and again

this large group fits well with the chaotic attractor obtained from the Poincare section.
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In Fig. 3d 1 has been increased to the value 1.825 which is above the the value of 7 =

1.822 where the boundary crisis occurs. The chaotic attractor has vanishcd and only the

period one stable solution marked by a diamond is present. However, the cell map procedure

has found 6 periodic groups. Two of them, marked with up triangles, correspond to step No.

10, and the one closest to the diamond mark is the stable period one solution, and the other

one is the unstable saddle point, still labeled U-1, which has just collided with the chaotic

attractor. The position of the unstable point found from the Newton-Raphson iteration

procedure is marked by a circle and again the cell map result shows excellent agreement with

the Newton-Raphson algorithm. The other groups that the cell to cell map has picked are

again shaows, the results of transients of real attractors which appear close to the 7/-value

of 1.825. These artificial groups are: one P-5 group with voltage V=9.000, a P-6 and a P-2

group with voltages V=8.004 and V=7.996, respectively, and finally a 'chaotic' P-7 group

with V-8.433. This P-7 group is the result of the chaotic transient due to the chaotic

attractor which existed before the boundary crisis.

Fig. 3 clearly shows that a crisis occurs as the strange attractor touches the saddle

point, but why should such an event be termed a boundary crisis? The reason is, as shown

in the next section, that the saddle point lies directly on a basin boundary.

V. Basin boundaries and heteroclinic manifold crossings.

In this section we shall use the cell to cell mapping to illustrate hetcroclinic tangcncics

and crossings of the stable and unstable manifolds of saddle orbits on basin

2.3,13boundaries . Both the boundary crisis and the interior crisis will be treated. We will use

cell mapping to compute basins of attraction, and illustrate that the saddle points lie on basin

boundaries. We consider the subset [ -1r S X I Sr] x [0 < X2 S 1] which is divided into

NX x NY = 100 x 100 cclls. Note that the division into cells is finer in this case than prc-
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viously, therefore the cell to cell map will give considerably more precise results. We start

with the boundary crisis. Fig, 4 shows the basin of attraction (marked by dots) of the stable

period one solution on step No. 10, just at the , -valuc 1.822 where the boundary crisis oc-

curs. Note that the chaotic attractor just touches the border of the basin of attraction for the

No. 10 step. This "touching" is a tangency, as discussed below.

The attracting point is marked by the up triangle. The white region consists of cells

which disappear from the subset of interest and they are mapped into the sink cell. (Con-

sidering aUl of the phase plane, points in the white region actuaUy belong to the basin of at-

traction of the chaotic attractor.) The period one saddle point (U-1) is marked by a circle

in Fig. 4 and lies on the borderline of the basin of attraction of the stable period one

attractor. This borderline is also the stable manifold of the saddle point (U-i). That is.

points on the basin boundary are attracted to (U-I). One branch of the unstable manifold

(along which points are repelled from (U-i)) is directed along the chaotic attractor. The

other unstable branch extends toward the up triangle. We see from Fig. 4 that part of thc

unstable manifold, namely the strange attractor, actually touches the stable manifold, the

basin boundary, in several places at the same time. Hence if the system begins in a state of

chaos on the stange attractor, it will eventually touch the stable manifold of (U-1) and bc

sent to the stable fixed point attractor with V=10 represented by the up triangle in Fig. 4,

and this is the most complete illustration of the boundary crisis.

From Fig. 4 this tangency of the strange attractor at (U-1) would be called a

homoclinic tangency, since only one saddle point is shown. However, since the mapping was

computed modulo 2 ir, we actualy have infinitely many saddle points. In accordance with

ref. 2, we believe that the unstable manifold of a given saddle accumulates on the stable

manifold of the previous saddle point, and accordingly Fig. 4 shows hetcroclinic tangcncics

when the boundary crisis occurs.
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In Fig. 5, 71 has been increased to the value 1.823 which is above the value where the

boundary crisis occurred. The basin of attraction of the period one attractor, shown as dots,

has been obtained using the cell to cel mapping procedure. The crosses denote periodic

groups that lie on the transient chaotic attractor .which is a remnant of the stable chaotic

attractor for 71 less than 1.822. This transient indicates hetcroclinic crossings of stable and

unstable manifolds. Points on the transient chaotic attractor will eventually come close to

the saddle point, marked by the circle in Fig. 5, passing it along the unstable orbit which lies

in the basin of attraction of the stable period one attractor. Thereby, the chaotic attractor

from Fig. 4 is destroyed. (That is, the attractor for the No. 10 step, marked by the up tri-

angle, is now the only stable attractor.)

Now we consider the interior crisis. Fig. 6 depicts the phase locked chaotic attractor

(solid line) as obtained from direct numerical simulation of Eq.1 at 7=1.886. This chaotic

attractor appears after the Feigenbaum sequence seen in Fig. 2. The cell to cell map found

a P-17 group with V=I0.000, a P-I group with V=9.996, and finally a P-2 group with

V=10.001. These three cell map groups all belong to step No. 10. The associated basin of

attraction for these three attractors is shown as dots. The cell map groups are marked by up

triangles, and they all lie, except for the P-1 group, exactly on the phase locked chaotic

attractor (solid line). From the Newton-Raphson algorithm we have identified the P-1 group

as the period one saddle point shown in Fig.2 and marked by a circle in Fig. 6. The interior

crisis occurs between 71=1.886 and y=1.88 7 and what happens is that the chaotic attractor

collides with the unstable period three saddle 5 shown as circles and labelled (U-3) in Fig. 6.

The period three saddle has been obtained by usirng the Newton-Raphson algorithm. Its tra-

jectorics arc shown as dashed curves in Fig. 2 (marked again by the lettering U-3) which also

indicates the collision between the chaotic attractor and the period three saddle. The chaotic

attractor is again a subset of the unstable manifolds of the period three saddles. The stable
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manifolds lie on thc basin boundaries. From Fig. 6 we observe that the unstablc manifolds

become tangent to the stable manifolds at the 77 value where the intcriorcrisis happens. For

17 above this value the unstable and stable manifolds intersect each other rcsulting in an cx-

pansion of the chaotic attractor, This intcrscction is apparent from Fig. 7 where Tj has been

increased to 1.888.

Vi. Conclusions.

We have used cell to cell mapping to study and explicitly display a boundary crisis and

an interior crisis in a driven Josephson Junction. Using a coarse cell division the cell mapping

procedure will pick up remnant periodic and remnant chaotic transients in addition to the

original existing attractors. With finer ccli division we obtained very precise pictures of the

tangencies and crossings of unstable and stable manifolds during both a boundary crisis and

an interior crisis. This has been confirmed by calculating fixed points from the Newlon-

Raphson algorithm and from Poincare sections.

Whcn exploring the global behavior of the Josephson junction the ceu mapping pro-

ccdure provides a fairly accurate picture of the dynamics. Stable and unstable fixed points

and associated basins of attractions can be found efficiently and at a low computational cost.

The same applies to the strange attractors and their basins of attraction. When more detailed

and accurate results arc needed one can use the information gained from the cell mapping in

applying the more precise tools, such as the Poincare map and the Ncwton-Raphson iteration

procedure. This is particularly valuable in the latter case where a good initial guess for the

position of an unstab'e fLxcd point is necessary.
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A= 10.198039027, and = 1.0. Periodic attractors obtained from the cell mapping

procedure are also shown using the subset r - _< x I < ] x C -2 < 2  2 ]

which have been divided into 50 x 100 cells. The average voltage of the periodic

groups marked by down pointing triangics. squares, and up pointing triangles. are 8,

9. and 10. respectively, corresponding to stcp Nos. 8, 9 and 10. The crosses denote

periodic groups with non-intcger voltage. Stable pcriodic orbits determined dircctly

from the Poincare section arc markcd with a diamond and circles show period one

saddles dctermincd from the Ncwton-Raphson algorithm. (a) = I.8 0, (b) 1=l.Sl

Ic) in= 1.32. (d) t;=l.825.
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periodic groups with non-intcger voltage. Stable periodic orbits detcr'mined dircctly

from the Powncare section arc marked with a diamond and cir'cles show period one

saddles determined from the Ncwton-Raphson algorithm. (a) T-1.S0, (b) ?I-1.81
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groups marked by down pointing triangles, squares, and up pointing triangles, arc 8,

9, and 10, respectively, corresponding to step Nos. 8. 9 and 10. The crosses denote

periodic groups with non-intcger voltage. Stable periodic orbits determined dirccrly

from the Poincare section arc marked with a diamond and circles show period one

saddles dctermined from the Ncwton-Raphson algorithm. (a) 7=- 1.80, (b) 77. 1.8]

(c) i=- 1.32, (d) 17=1.825.
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Abstract
Fluxons in long .Josephson junctions arc physical manifestations of travelling

waves that connect rcst states or tlie model partial differential equation (p.d.e.),

wh~ich is a perturbed sine-Gordon equation. In the reduced travelling wave ordinary

differential equation (o.d.e.), fluxons correspond to heteroclinic connections be-

tween fixedl points. In thle absence of surface impedlance effects, fluxoIIs

persist in parameter regimes int il the fixed points dlisappear, after wvhich tlie

system 'switches" to another configuiration. It is known that tile presence or

suirface impedlance produces a singular pertuirbation of the model equation, to-

get her wvithi a new phienomenon: tile fluxons switch in parameter regimes before thie

Fixed points are lost. Why this occurs is unknown, and( is tlie focus of (his paper.

T'~vo disjoint possibilities are: 1) instability: fluxons still exist, but they become

mitstalble in thle p.d.e. due to surface impedance effects; 2) nonexistence: thie tiuxons

fail to exist, even though thle fixed points remnain. Hlere, we provide compelling

numerical evidence for the second scenario, characterized by a global bifurcation in

the travellinig wave phase space: a b~reakdown of' heteroclinic orbits, undetected at

Ilie local linearized level. Moreover, this global o.d.e. bifurcation occurs at lparaln-

cecr valties consistent with the p.d.e. switching phenomenont.



1. Introduction
The propagation of magnetic flux quanta (fluxons) in long Josephson

tunnel junctions has attracted research interest, both theoretically, in connection

with the intrinsic nonlinear dynamics involved, and practically, in view of potential

applications in high-performance electronic systems [1. Fluxons in Josephson

junctions correspond to quasi-soliton solutions of the underlying model equation,

which is a sine-Gordon (sG) equation modified by the addition of dissipative and

energy-input terms [21. Such terms destroy the perfect integrability of the pure

sG system and thus pose questions regarding the existence and stability of fluxon

solutions in various regions of the parameter space of the model equation.

The most direct experimental signature of fluxon propagation in long

juictions is provided by the so-called zero-field steps (ZFS's) in the current-voltage

(lOV) characteristics of such devices. These are a set of rather bnsque, approxi-

inately constant-voltage spikes in the I-V characteristic; a typical experimental

tracing is shown in Fig. 1. Extensive analytic, numerical, and experimental

investigations have established the following basic facts about ZFS's:

a) The ZFS order number corresponds to the number of fluxons participating

in tle associated dynamic state, i.e., ZFSI is due to one fluxon, ZFS2 to two, etc.

h)) The voltage on a ZFS is strictly proportional to the average fluxon propagation

velocity.

c) I lie fonation of a fluxon state, and hence of a ZFS, at low current values

is due to a parametrically excited instability of the so-called McCumber state,

Nihich is the uniform background state that, in Fig. I, corresponds to the curve

labelled MCB and to its extrapolation to lower voltages.

d) For a given junction at a given temperature each FS terminates abruptly at a

well-defined current value that is typically 0.3 - 0.8 times the maximum zero-

voltage current (labelled /. in Fig. I); at this current value the junction switches

to a higher-voltage state (indicated by arrows in Fig. I).

Fact a) accounts, for example, for the approximately equal voltage spacing between

adjacent ZFS's. Fact b) implies that raising tie bias current drives the iluxons

toward an asymptotic limiting velocity. Fact c) explains the structure near the

"feet" of ZFS's. Fact d) is the focus of the present paper.

To understand the mechanism that determines the height of ZFS's is of

couisiderable importance to the experimentalist, and several theoretical approaches

have been proposed in the literature. All are based on analysis of the perturbed

,G eruiation, which, in normalized form, is [2.
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- 4,,- sin - a -f x,- y (I)

I lere, q5(x, t) is the usual Josephson phase variable [I] , x is distance along the

ijunction normalized to the Josephson penetration length, t is time normalized to the
inverse of the Josephson plasma angular frequency, and subscripts denote partial
derivatives. It is assumed that the junction geometry is long and narrow, so that a

I + I dimensional model is appropriate.

The perturbation on the pure sG structure is characterized by the parameters

r, f? and )' . The term in a represents shunt loss due to quasiparticle tunneling (here

assumed ohmic), the term in / represents dissipation due to the surface resistance
or the superconducting films comprising the junction electrodes, and y is the spa-
tially uniform bias current normalized to the maximum zero-voltage Josephson

current. It is worthwhile noting that the term in / constitutes a singular per-
turbation of Eq. (1). The necessity of including this term in the model was first

suggested by Scott [3], and accumulated experience has amply demonstrated that

even though its inclusion represents a mathematical complication, its presence is

essential for the description of real, physical junctions.

It is necessary also to prescribe appropriate boundary conditions in order

to specify completely the problem. Physically reasonable boundary conditions

emerge from considerations on the junction geometry. Two commonly studied
configurations are the so-called overlap geometry and the annular geometry

[iA ]. For the overlap geometry appropriate boundary conditions are

,!),(0, t) = 4) ,(L, t) = ql , (2)

where L is the normalized length of the junction and q is normalized measure of the

external magnetic field applied in the plane of the junction perpendicular to its long

dimlension [2] . For the annular geometry the appropriate boundary condition is

one of periodicity:

,1(x + L, t) = 0(x, t) + 2rn , (3)

vhere n is the difference between the number or fluxons and antifluxons present in

the junction (since the junction is a -closed loop it is a conserved quantity).

Overlap-geometry junctions have undoubtedly received more experimental atten-

linn since the fa)rication of experimental samples is somewhat simpler for such

devices. From the theoretical point of view, on the other hand, the annular ge-

ometry offers fhe advantage of a simpler dynamics due to (lie absence of ile

3



* * ,fluxon-antifluxon reflection effects that occur at the finite ends of overlap junc-

tions. Fluxon propagation on an annular junction may be described by a travel-

ling wave reduction of Eq. (1). Specifically, assuming a travelling wave solution

of the form

,h(x,t) = CD(x - lt) - (4)

in which u is an arbitrary, constant propagation velocity (u > 0), we can reduce

Eq. (I) to the o.d.e.

it- ) -sin ( = - cu CD +flu CD - y (5)

iwhere overdots denote derivatives with respect to . Moreover, if the normalized

circumferential length, L, of the annular junction is large compared with unity,

the situation may be well-approximated by the infinite-length limit. In this case,

fluxons correspond to heteroclinic connections between fixed points of Eq. (5).

Our present study of the mechanism that determines the height of ZFS's is

based on a detailed numerical analysis of just this case.

To put our work into a proper perspective, we note that various ap-

proaches to this problem have been reported in the literature. Solutions of Eq. (5),

Nith fl = 0 , a = constant, (I - it2) > 0, and it = I , were studied many years ago in

other contexts [5,6]. The salient features that emerge from these studies are:

For given a, y, and u, there exists at most one periodic solution of Eq. (5). For

y > I , a periodic solution always exists. For V < I , a periodic solution exists

provided that a < a,, where a u /41 - u -_ 1.2. Moreover, these periodic sol-

ut ions are stable (in the context of the o.d.e.).

The earliest (to our knowledge) application of Eq. (5), with fl #- 0 and

i >_ I, to the problem of flhxon propagation in long Josephson junctions was

reported in 1968 by Johnson [7], who integrated Eq. (5) using a hybrid cora-

puter. Johnson employed a two-valued, piecewise-constant, voltage-dependent a,

and he used physically reasonable estimates for the parameters 01, 0-2 and [I . lie

found values for y,/, in the range 0.3 - 0.6, with , a decreasing function of the

order number, it, of the ZFS's, as is normally observed experimentally (see Fig.

i). -Johnson's work, unfortunately, was never widely publicized, perhaps because

at that time ZFS's had not yet been observed experimentally.

Parmentier and Costabile [81 showed that Eq. (5) can be integrated

analytically for fl = 0 and a = F I ), 1 , i.e., a dissipation coefficient proportional to

the absolute value of the voltage, leading to a quadratic, rather than ohmic, dissi-
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pation. Their analysis gives Imnx - , but with ymx an increasing function of ii.

A qualitatively very similar result was found by Marcus and Imry[9] by inte-

grating Eq. (5) numerically with / = 0 and a = constant. A significant differ-

ence between the results of Refs. 8 and 9 and those of Johnson [7] is that the

former considered n-periodic solutions of Eq. (5) for a finite-length annular junc-

lion, whereas Johnson considered n-bunches of fluxons for an (effectively)

infinite-length junction. Elementary topological considerations, in fact, show that

u-hunch solutions (n > I) of Eq. (5) in the infinite-length limit cannot exist if

/10.

An approach used by several authors is a Fourier-G alerkin multi-mode

decomposition of Eq. (1), with the boundary condition of Eq. (2), together with a

solution of the resulting multi-mode equations by means of the resonant Krylov-

Bogoliubov approximation. The pioneering work in this direction was that of

Takanaka [10], who considered a single-mode approximation with / = 0 and

= constant, in the absence of applied magnetic field (?I = 0). Chang et al.

[ I I ] extended this to a two-mode approximation, also with fl = 0 and q = 0.

Finally, Enpuku et al. [121 presented the general N-mode approximation, with

o/ and qI all different from zero. In all cases, this approach gives y,,ma I for

ZFSi (the only case considered), and, as might be expected, the results improve as

the number of modes used increases.

Linear stability analyses of travelling wave solutions of Eq. (1), i.e., sol-

utions of Eq. (5), with the boundary condition of Eq. (3), for/f = 0 and a = con-

stant, were given by Burkov and Lifsic [ 13] and by Biittiker at al. [ 14]. Burkov

and Lifsic considered junctions of arbitrary length with n > 1, whereas Bittiker

at al. focused on the infinite-length limit with n = I. Burkov and Lifsic conclude

that periodic fluxon solutions of Eq. (5) are stable (in the context of the p.d.e.) for

u < I . Biittiker et al. show that the n = I fluxon solutions on the infinite-length

junction are stable for 0 < y < I. Since, as pointed out by Marcus and Inlry [9],

(for /10) y- y,.foru- 1,and

VIn.7 -
V, + (21ran/L)2  (6)

the two results are consistent.

An approximation that permits analytic solution of Eq. (5) is to replace

the nonlinear term, sin (D, with a piecewise-linear sawtooth function. Sakai and

'ateno [15] used this approach to calculate periodic solutions of Eq. (5) with

/- 0, = constant, and n _> 1. Their analysis gives
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Y',,,.IX = coth(L/2ncn), (7)

which, although quantitatively different, is qualitatively quite similar to Eq. (6); in

particular, Yr., - I in the infinite-length limit. The piecewise-linear approach was

extended by Sakai and Pedersen [-161 to the /= constant, a = constant, it = I case

in the infinite-length limit. Their work showed that, for fi larger than a certain

threshold value, Ym, decreases with increasing fl. Sakai [ 17] further extended this

approach to obtain 2-bunch solutions of Eq. (5) in the infinite-length limit. The

results in this case are quite reminiscent of those obtained by .Johnson [7]

Perturbative methods have been employed to calculate the y - u re-

lation for n = I solutions of Eq. (5) in the infinite-length limit [4,18,19]. The

procedure, in all cases, involves selecting a solution ansatz from a related, but

simpler, problem and imposing a balance between the average power lost to

dissipation and that furnished by the bias current. McLaughlin and Scott [41

used an unperturbed sG kink as a solution ansatz. This ansatz gives reliable re-

stilts for y << I, but it breaks down at high bias, giving V - oo for u -- I.

Ferrigno and Pace [18] improved this result by incorporating into their ansatz

the shift of tle sG ground state due to non-zero V and the limited (i.e., non-

iorentz) contraction of fluxons due to a / = 0 and a = constant dissipation.

Their result reduces to that of McLaughlin and Scott for y << I, but it gives

I,-- I for u -4 I. A related approach, with similar results, was reported by

Pagano et al. [191, who alsk :learly pin-pointed the fact that the failure of the

perturbative approach to capture accurate values for Vm,, in the presence of a

non-zero fl-loss term is attributable to the fact that this loss term causes a sig-

nificant distortion of the fluxon waveform that is not well-described by the

ansiitze employed.

A frequently used approach is the direct numerical integration of Eq. (1),

with boundary conditions given either by Eq. (2) or Eq. (3). One of the earliest

efforts in this direction was that of Nakajima et al. [201, who integrated Eq. (I),

with ?i = 0 in Eq. (2), for various values of a and /, and initial conditions corre-

sponding to various values of n, using a finite-difference scheme. Further results

were reported by Marcus and lmry [9], Erni and Parmentier [21], and Lomdahl

et al. [21 An important contribution was that of Davidson et al. [22] , who fo-

(iised their attention on the fl-loss terni, thus providing a stimulus for a number

of successive works. Perhaps the most detailed work to date is that of Pagano

et al. [231, who considered the dependence of V,,, on ac, /1 and L for both the
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overlap and the annular geometries. A careful reading of the various works

employing the direct numerical integration approach reveals a number of quanti-

tative discrepancies in the determination of ymax. These may be attributed to the
following two causes: 1) Discretization errors: excessively coarse spatio-
temporal grids used with finite-difference algorithms tend to give values for

that are lower than the true values; 2) "Non- adiabatic" parameter vari-
ations: increments in the bias current, y , applied as temporal step functions
and/or initial conditions chosen "too far" from the final fluxon waveforms also
tend to cause premature switching, i.e. depressed values for Yma.

The body of existing literature on the subject, reviewed briefly above,
allows the formulation of the following working hypothesis: In the absence of a fl
-loss term, y,,, = I for n = I, both for infinite-length annular-geometry junctions

aml for finite-length overlap-geometry junctions. For finite-length annular-

geometry junctions, the n -dependence of yx. is given approximately by Eq. (6)
or by Eq. (7). In the presence of a fl-loss term, ym in all cases is reduced to lower
values. We propose herein to examine the mechanism responsible for this re-
duction for the case of n = I in the infinite-length limit. Specifically, we develop

refined numerical procedures that: I) reliably determine a fluxon solution
(heteroclinic connection) when it exists, in the form of a numerical continuity proof;
2) determine an apparent numerical breakdown of the heteroclinic connection as
parameters in the equation are varied, corresponding to a qualitative change in the
numerical continuity diagnostic; 3) nile out the breakdown of the connection due
to local phenomena (such as behavior of the linearized eigenspaces at the fixed
points); and 4) thus lead us to conjecture a global bifurcation phenomenon for
fluxon switching in the presence of surface impedance effects. The precise math-
ematical nature of this global bifurcation is an open problem. Moreover, this paper
represents a step toward the development of general purpose codes to reliably detect
existence and breakdown of orbits homoclinic or heteroclinic to hyperbolic fixed

points, in particular when oscillations are present.

It. Reduction to the travelling wave o.d.e. and phase space dis-

cussion
The justification for using the reduced travelling wave ode, Eq. (5), to

detennine y,,, for annular-geometry junctions derives from information obtained
via the numerical integration of Eq. (1), with the boundary condition of Eq. (3).
Typically, fiuxon solutions of Eq. (1) are easily found numerically, with a fairly
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large computational domain of attraction (except when y --+ Ym.) If we decompose

Eq. (1) into Fourier spatial modes, we can define a mode phase velocity as

I/,,, = - F.,(O,)/F.,(O,), (8)

where F,(Y) is the m'th component of the spatial Fourier transform of Y. During

steady propagation it is observed [23] that all of the Um tend rapidly to a common

asymptotic value, which is just the velocity it of Eq. (5).

We may note that Eq. (5) is invariant under the transformation

= -D , y' = - y (9)

Consequently, no loss of generality is incurred by imposing y _ 0 .

For y < I, Eq. (5) has two classes of fixed points:

(1)2j± = arcsin(y) + 2j7r, 4)2j+1 0, 4)2j+I = 0 (1Oa)

and

42,= 1t - arcsin(y) + 2jit, O2j 0, i)2j = 0 (1Ob)

where j = 0, + I, ± 2, .. , and 0 < arcsin(y) < 7r/2. For y > I no such fixed points

exist. The linear stability of the fixed points of Eqs. (10a,b) is determined by the

zeroes of the polynomial

P -( U )A 2 +u ±1 - y 2  ( I)

where the plus sign before the last term holds for the fixed points of Eq. (101)) and

the minus sign for those of Eq. (10a). Elementary analysis shows that P,(A) has

one positive real zero and either two negative real zeroes or two complex conjugate

zcroes with negative real part, whereas P(1) has one negative real zero and either

two positive real zeroes or two complex conjugate zeroes with positive real part.

The fixed points of Eqs. (10a,b) correspond to time-stationary, space-independent

solutions of Eq. (1); equivalently, they correspond to the equilibrium solutions of

a plane pendulum subjected to a constant torque. From this analogy, it is clear

that the fixed points of Eq. (10a) correspond to stable static solutions and those

of Eq. (101)) to unstable ones (in the context of the p.d.e.). Consequently, stable

fluxon solutions of Eq. (1) correspond to heteroclinic connections between the fixed

points of Eq. (10a). Heteroclinic connections between the fixed points of Eq.

(10b) also exist; however, these do not correspond to stable fluxons in the p.d.e.

I



in the limit y - 1, P+(A) and P_()) coalesce. In this case zeroes are , = 0 plus one

positive and one negative value.

The numerical results presented in the following section show that for

each y y,,,x there is a unique u(y) such that there exists a connection from ct)

to (1). This connection corresponds [23] to a stable single-fluxon solution of Eq.

(I). Likewise, there is a unique, but different, u(y) for the existence of a (DO to 02

connection. Two examples of such connections are shown in Figs. 2 and 3. More-

over, there exist still other heteroclinic connections, corresponding, for example,

to bunched multi-fluxon solutions of the p.d.e., but these are not investigated fur-

ther herein.

To be specific, we now fix the particular values

o,=0.18, and fl=0.10 (12)

(as will be seen in the following section, this choice is less restrictive than at first

might appear). With these values, all linearized eigenvalues are real for

0 < y < 0.4, which yields non-oscillatory heteroclinic orbits. For 0.4 < y < YM

there are two complex conjugate eigenvalues, which yields in tie corresponding

solution an oscillatory overshoot phenomenon in the asymptotic approach to the

fixed point.

Ill. Numerical Global Connection Curves.
In the previous section we have studied the fixed points of Eq.(5), which de-

scribes the travelling wave solutions of Eq. (1). From the study of the linearization

near the fixed points we have deduced the behavior of tie flow near the equilibrium

points. This information, though important in determining the r6le of the

perturbative parameters a, fl and y, does not determine the existence of global

connections between the fixed points.

In this section we first analyze the symmetry and invariance properties of Eq.

(5) in order to obtain useful information on the existence of the global connections.

Then the numerical methods and results are presented.

There are two obvious transformitions which leave Eq. (5) invariant: One,

E(Is. (9), has already been indicated in the previous section. The other transfor-

malion is:

' = -. , ' - (13)
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which provides a numerical advantage, by exploiting "time" reversal, in computing

the global connection curves. For example the orbit which leaves the fixed point

(1), along the two-dimensional unstable manifold, uIV(1 ) , and connects to 03 along

the one-dimensional stable one, Wf(cD,) , is intractable numerically in forward time.

One would need to search over all directions leaving W4"( n) . However, by re-

versing time via Eqs. (13), one shoots numerically along the unique direction,

1V;(t3).

Another invariance of Eq. (5) is given by a generalized Lorentz transforma-

tion

= ./u) (I 4a)

[I'= I- - )2(U)]-2 (1 4b)

,' ill)( C (I 4c)'It

, _U, +f (U)/ (I4d)

wherefJu) is any real function satisfying 0 < fi(u) < (I - u2) - I for u2 < I and
0 < flu) for u 2 > 1. This transformation gives a scaling law in the parameters a

and /1 which can be used to extend the results contained here for fixed a, (1

An important invariant transformation is

f' /u) ¢ (I15a)

1),= 7T - ( (15b)
2

,'= [l + (I - (12)(,] - (1 5c)

a' f l Ju) a (I5(0

3' _ u f1(u,) I (I 5e)

with flu) real, fu) : 0 for u2 < I ,and 0 < f(u) < (ul - I )'for u2 > I. In

(he special case flu) - and u = I we find the transformation

it = r - q)(16t,)

I0

(I 6a)
. . ... (I-=- 6 h), ,, m m nm nnmu um l m m m n I i



(16c)

=i (16e)

This invariance property implies that, for u = I , either both connections (DI to

(1), and (O to 4)2 exist simultaneously or else neither exists. As suggested in Fig. 2

and indicated more clearly in Fig. 4 this fact corresponds to the intersection, at

u = I , of existence curves of 1), to 4)3 connections and of D0 to (D, connections,

at values of y less than unity. This is in contrast with the / = 0 case: in that case,

u = I only for y = I, and the fixed points themselves coalesce.

We proceed now to discuss the numerical determination of these global con-

nections. The details are deferred to the appendix, but we will describe the main

features. We employ a shooting method as follows : For fixed a, fl as in Eq. (12)

we first choose a value of y e [0, 1] , beginning near 0. In order to seek a con-

nection from (DI to (D3 we exploit the "time" reversal symmetry (13). That is, rather

than vary over all directions emanating from W,(4 1 ) , we shoot from (D3 along the

unique direction W,(( 3) approximated by the stable eigenvector at 03 . The ni-

merical code iterates trying to minimize over u the distance function d(u)

_''() = mi < /((D - (D ) )2 + (D2 + (pl (17)

having a large enough value. The absolute minimum, d,,(2) , if sufficiently close

to 0 , gives a candidate for the velocity value associated to the (D, to 0 3 connection.

We then refine the iteration steps on this 17 in order to exhibit that d,(a) can be

brought arbitrarily close to zero.

At this point we implement an additional numerical algorithm to reinforce

that a fixed point connection has been found. Shooting methods for connections to

stable fixed points are highly stable numerically, whereas connections into unstable

fixed points are numerically unstable. The final algorithm we use is a numerical

continuity argument which is applicable for shooting into a one-dimensionally un-

stable fixed point. We construct a sphere of radius R around the fixed point q1 •

The value of R is chosen small enough ( R <_ 0.1 ) that a linearization of the flow

inside the sphere is appropriate. When the orbit approaching (Dj intersects the

sphere, we identify tie intersection point ' = (V, V', V') as the initial condition

for the evolution in the linearized space. The approach into the sphere about ([), is
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always nearly tangent to the stable manifold, which defines an equatorial plane for

the sphere. The departure will necessarily be transverse to this plane, along the un-

stable manifold, and will either be out the top (the "northern hemisphere") or bot-

tom (the "southern hemisphere") of the sphere. We can then solve analytically the

linearized o.d.e.

(I - u2) (' - sin(j) - cos(j) ( =-u D + fluF -y (18)

obtaining

()=A e" + BeM2€ + Ce ' 3 + (j (19)

where A1, A2 , and A3 are the roots of P1(JA) (Eq. (11)) and A,B, and C are deter-

mined by the initial conditions : (D(0) = ' . In our case, i.e. the oscillatory

heteroclinic orbit and j = I , we have A = k > 0 2 = A3 = 9 + i () , where p < 0

(note that, by using the transformation of Eqs. (13), the sign of the real eigenvalue

can always be taken positive). The local behavior of the solution will then depend

on the value of A, which can be expressed simply as:

' - 2kD' + (V -D)(k 2 +2)A1 2 2 (20)
(u - k)2 + a,

If A = 0 the solution (D will tend toward (DI, while for A # 0 it will diverge through

the "top" of the sphere for A > 0 or through the "bottom" of the sphere for A < 0.

We iterate u, in a neighborhood of U", to show that for u' > a the solution diverges

in one direction, while for u- < U it diverges in the other direction. This provides a

numerical continuity diagnostic. When the continuity argument and the shooting

method both imply a connection we accept this as numerical proof. By iterating on

y (his process yields the (D, to CD3 and the (D. to (D2 connection curves of Fig. 4. We

remark that the connection curves intersect at u = I as discussed earlier. More-

over, as can he seen in Fig. 4b, these curves persist past u = I contrary to the

fl = 0 case. (This result was also found by Sakai and Pedersen [16] for a related

system where the sine-term is replaced by a piecewise linear approximation). The

existence of a stable fluxon solution propagating at a velocity u > I might at first

seem surprising, but it Is simply a consequence of the fact that, with a non-zero

fl -term, Eq. (1) is no longer hyperbolic. Fig. 5 shows such a stable fluxon solution,

obtained by a full simulation of Eq. (1) with a = 0.18, fl = 0.10, and y = 0.888. The

velocity here, measured as described in the discussion surrounding Eq. (8), is
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u = 1.0018. In the / = 0 case u approaches I as y approaches I corresponding to

the coalescence of 1) and (o. Beyond this point the fixed points disappear, so that

tie termination of the global connections coincides with this local degeneracy.

The fundamental result of this paper is the simultaneous termination of the

fixed point connection curves of Fig. 4 at the critical value y* - 0.8877 ( for the

chosen values of a, and /). For y > y* the numerical code cannot reduce the dis-

(ance function, d,(u) , arbitrarily close to 0: in fact d, (u) reaches a minimum

bounded well away from zero. Fig. 6 shows the dramatic jump observed in this

minimum distance function at y = y . We emphasize that this phenomenon occurs

simultaneously for both connection curves, which are computed independently. We

also emphasize that this critical y* where the fixed point connections fail to exist

numerically does not correspond to any local bifurcation. Fig. 7 shows that there is

no signature of a biftrcation in the linearized eigenspace at I.,.

We therefore conclude that the termination of these connections corresponds

to a global bifurcation in this o.d.e. phase space. It remains to be determined how

this breakdown of heteroclinic orbits is reflected topologically.

We recall also that the critical value y* is consistent with the numerical

studies of the full p.d.e. (Eq.(I)) reported in [231. In this study the global

bifurcation was shown to result in the switching from the fluxon state to the running

mode state.

Discussions and Conclusion
For Josephson junctions with surface impedance effects, we have provided

compelling numerical evidence that the fluxon switching phenomenon is a nonex-

istence phenomenon, as opposed to an instability mechanism. Mathematically, this

scenario is described by a global bifurcation in the phase space of the reduced

travelling wave o.d.e.

The phenomenon which we numerically document here is the breakdown of

heleroclinic orbits in a three dimensional dynamical system, undetected in the

linearized eigenvalues of the associated fixed points. Mathematical methods have

been developed for detecting such global phenomena (see, for example, the text by

Guckenheimer and Holmes [24] ), but for dynamical systems which do not include

our example. Similar phenomena have been studied extensively in models of nerve

propagation [25 - 27] , reaction-diffusion equations [28 - 30] , and population

growth [31 ] . The analytical success in these works rests mainly with proving ex-
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istence of global connections between fixed points with purely real lineari7ed

eigenvalues. In our example, the heteroclinic connections persist well into the

oscillatory regime. Moreover, these rigorous proofs referenced above do not shed

light on the breakdown of heteroclinic connections. Our paper provides a model

mathematical example for this global bifurcation phenomenon, and poses a chal-

lenging problem to prove the scenario we indicate here.

Additional problems are suggested in this study, related to the specific exam-

ple and to general computational algorithms. Higher order connections between

Fixed points separated by integer multiples of 2n are known to exist and also exhibit

switching. We have not investigated these states, but surmise that they also switch

due to global bifurcations.

Another area touched upon here and that needs development is the con-

struction of optimal numerical algorithms that establish when a global connection

exists, accurately compute it, and then detect global bifurcations as we have illus-

trated for our example. Global connection algorithms are available for connection

from unstable to stable fixed points [32], but the problem is considerably more

delicate when orbits connect between unstable fixed points.
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Appendix
We take as initial condition for the integration of the D, to 03 connection of

Eq. (5) the vector 1) = 13 + Zc. , where (1' is a unit eigenvector associated to

1l;(j3), (which, under the transformation of Eqs. (13), becomes one-dimensionally

unstable), and e < 0.01 . As emphasized by Miura [27], it is essential to guarantee

that r is small enough that the results of the integration (1o not depend on its value.

For all of the calculations reported we have checked this by reducing 1: until no

changes resulted in the computed solution ( r down to 10 5).

Once the initial condition is chosen, the orbit is computed by integrating Eq.

(5) using a sixth-order, variable step-size, Runge-Kutta method [33]. This routine

has a control over the global error; for all of our computations the global error has

been kept sufficiently low that it did not affect the results (typical values of the

maximum global error range from 10 5 to 10 9 ). At each "time" step in the inte-

gration the distance d(u) is computed. The integration is carried on until the orbit,

after a first approach to (D , diverges away from it. The minimum distance of ap-

proach, d,,(u) , together with information on "overshooting" or "undershooting" of

the solution, is then used to determine the next trial value of u. The shooting algo-

iithm is repeated several times, each time reducing the interval of u -values scanned

over, until the value a is found to nine significant digits. This procedure is illustrated

in Fig. 8, which shows d(u) vs. Au on three different scales, where Au is the variation

of it about 11 , for the parameter values a = 0.05, fl = 0.02, y = 0.7.

Since dm( ) will never be exactly zero because of the finite precision of the

integration, this procedure, by itself, does not constitute a proof of the existence

of a connection. For this reason, we next pass to the continuity diagnostic described

in Section III: The velocity u is varied around r (nine significant digits), and the

corresponding value of A is computed. If A changes sign crossing ^ , this strongly

implies that there exists a value of u for which A = 0, thus demonstrating the ex-

istence of an orbit that connects to D,.

Analogously to the discussion regarding the choice of the parameter r in the

initial condition, we note that a similar consideration applies to the radius, R, of the

sphere constructed around 0, . As was done for E , we have reduced R until no

changes resulted in the computed solution.

A similar procedure is used to locate the (D, to (2 connection, shooting out

of (DO . The procedure could, presumably, also be used to find higher-order con-

nections ( IP to bD , etc.) but we have not yet attempted to do so.

Is



An indication of the overall accuracy of our numerical scheme is suggested in

Fig. 2: the theoretical discussion presented in Section 111 (Eqs. (16) et seq.) shows

that simultaneous ([)O to (D and 1 to (13 connections should exist for u = i; nu-

merically, we find these simultaneous connections for u - 0.999999872.

16
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Figure captions

Fig. I Experimental I-V characteristic of a long Josephson junction with overlap

geometry. The critical current lo and six ZFS's are shown. Arrows indi-

cate the direction of the voltage change during the switching.

Fig. 2a (I)l - (D3 connection (full curve) and D0 - D2 connection (dashed curve)

projected into the (0 , 0,) plane as obtained from numerical integration

of Eq. (5). a = 0. 18, / = 0. 1, y = 0.883442, u = 0.999999872.

Fig. 21 Same connections as in Fig. 2a but projected into the (0, 0,,) plane.

Fig. 3a Phase space projections into the (0 , 4),) plane of the orbits leaving (Do

and (D3. o = 0.18,/I = 0.1, y = 0.88, u = 0.998733778 . For these param-

eter values only the 0, - 0D3 connection exists.

Fig. 3h Same as Fig. 3a but projected into the (0 , 0,,) plane.

Fig. 4a Locus of the () - (D3 (a), and of the (DO - ( (b) connections in the

y - u plane near u = 1. y*-0.X88 is the switching bias value.

x = 0. 18, /f = 0. 1

Fig. 4b Detail of curves of Fig. 4a.

Fig. 5 3-D picture of the numerical solution of the p.d.e. Eq. (1) showing a stable

fluxon moving with a speed larger than unity. 0 , = 0.18 0.1,

y = 0.888 , u = 1.0018.

Fig. 6 Locus of the (D, - (D3 (full line) and the (Do - (D2 (dash-dotted line) con-

nections in the y - u plane near it = I. Also shown are 4, (dotted line)

and d,, (dashed line) vs y.

Fig. 7 Roots of P,(A) (a,b) and P_(.) (c,d) along the locus of the 0,r - (3 (a,c)

and the (Do - 02 (b,d) connections. The real root (dash-dotted line) and

the complex conjugate roots (full line = real part, dashed line = imagi-

nary part) are shown vs y. c = 0.18,/I 0.1 and y* 0.8877 is the

switching bias value

21



Fig. 8 d,, vs Au at various scales. a = 0.05 , fi=0.02, y0=.7 , u = I+A

u = 0.9956555358 is the velocity value at which the A1 - (3 connection

exists. (a) shows a false local minimum at Aut-0.00015 , (b) shows an-

other false local minimum at Aut- -2 x 10 7 , (c) shows the true minimum

(Au = 0).

22



U.)
(1) L4m
0

0

-0

L-I

I CD-

E



C)Y

-Y) 01



41

C)

-4 0

-Op

- -ft

ftft -1



0

CY)

lie
- ~ ~ c --n-

I' V



Q)

4-,)

U,

-4 0

C%%4

5 5 I



tn

co
-d

CD
6d

0 0 CO
I I l i

JC



Ccc

00

0

co

(0co
0

0 C 9a) a-)
6D m

3C



C)C

00

c0
X-



.Ln

-4 0

o 6o

/ co

/ co

co

/'

d do



Q)

0
Li4

/ co
0 0

C% 1,1 -.



C)

L4

.- I 0

I c
OD

/

• (," 0 N ",1



-4 0

co
Ti C

(0

/1I -Z
T/

'0



-jr- .J

U,

.-4 0

"co

L14

10

I
I I

, I I



C,,

-,,

.- 4 0L~

0
0
ci

0

0

0



~Ij ~J

~
U (0

0

0

x
U~)

on

'0

U-

x
LL~)

I I I I I

0' cfl c~O
0 0 0 6 6



00

'0

0

a)

0
x

0

00 C 04
0 0 0 0 0



iriterni:1] s i I 1ation frequencie~; arnd anharmn;.C E-ffeCtS -fCir

thre dc-u.b]r gmnsx-oro k hin

1-1. Salerno*, 11, R. Semuelsen-m

KIDIT, The Technical University of Den~mark

DK--E00C Lyngby, Denmerle,

4)also Laborator-y of Applied Mathematical Phy5icc!

T he Tec hnic alI Un iver s ity of Venmar k, £-EC Ly ncby

(;,t~r ma rent 6dd ress : D ipa r t 1ent o d i F jsijc a Icour ic a u I3

L'ni.versita' , I-E'LiAQO Salerno, Italy)

& c Phy si cs L abcraI ory I , IThe Tech nj c& I Urw 'e~r itv (

Cc C-rnzr k , Dk,-2G(CO L y rgby, D-rlmz 1-



Abstrac t

A simple der iaticn of the smal] osCillation freque- c

around 4n-kink solutions of the double sine-Gordon equation

is presented. Smail corrections to these frequencies due to

anhermonic effects are also numerically and analytically

investigated. The analysis is based on energetic

ccnsiderations and on the mechanical interpretation of a

2n-Iink as ttw4o point particles connected by a spring.



.. Introduction

The double sine-Gordon equation (DSG)

,,- nu + / sin(0,/2) = 0

has received much attention during the past years because cf

its ccnnection with several physical phenomena such as spin

dynamics of superfluid :He [1], commensurate-incommensurate

phase transitions [2), magnetic chains [3], domain walls [ 4,

etc, In both limits X, = 0 and N, = 0 equation (3) reduces tc

t'e wel -known sine-Gordon equation (SG) wj th exact so] i tnr,

scluticns. For X, i 0 and X;. / 0 equation (I) has diff1-erent

classes of solitary wave solutions which undergo wea-ly

,inelastic scattering [5). Among these solutions there is a

sut-ciass (4n-kir, k) which car) be expressed as linear super-

pcsition of two sine- Gordcr, solitcns [6)

1-.(,: .R ) = 4tan-IE e:.p(-.x 4R,.)]+ tan' r [ e;,,p(X-+ R _) 1 1

1-,ith EP a constant representing the distance between the

t..o sir e- Gordon so]itons,arnd R.. is related to X, E=n ? in

3. ) by

t, , D n t. h F ,X> -4 sech"F . (_

FrE' -u rerica] stud cs, on the s-i, el osciI ]] tt- prct-lc-

!'r,-i u - J cn (2) it iE s .e I I r:t_.rn that tcs cI .cc -:



frequency (related to trarslational invariance) there is an

additio' al bound state corresponding to internal oscillaticns

of ihe two sine-Gordon solitons around the center of m-ss

of soution (2). Slightly different analytical eypressions for

the frequEncy of such oscillation have been derived 7,E43.

The aim of the present paper is to present a simple deriv-ticn

cf the small oscillation frequencies around 4n-Pin: solutions

,d to study corrections to these frequencies due to anhamr:nc

e, ,ts. The analysis will be based on energetic considerat-.or-s

ans on a mechanical analog of solution (2) as tt..o point

t c~es connected by a nonlinear spring [9,103, The $reque c-

:f the oscillations is then computed in terms of the mass of

the particle and of the spring constant of the L4n=kirk

oscillator. A numerical investigation of the anharmonic

effects of the 4n-kin' oscillations is also perforr,ed &nd

crmpared i.,ith results obtained by a perturbation analysis. As

a result w.e find the same analytical expression for the small

oscillation frequency reported in Ref. [71, while the cerrectic-s

to these frequencies due to anharnonicity appear' o be very

, .3r~ 1 1

The organizaticn of the paper is as. fol )os. In secticrn

I) t'.'e present the derivation of the small oscillation frequercy

= .~'on t.hile in secticn III ,we study both rumerically a:-d

an, ytice]ly the corrections to this frequency due to anh,rr:-:c

£ f'E c t s.

-ra7 y, sectjo,- IV conta i ns the sunrary and t-e cc, rc! -' -s

- - . t rf



H f= [11/2 -T ¢,. )+X, (a, -ccs ) r(a; .- cos (0,12 ))I]d>: (

L.,',ere a , a,. are suitable rormalization constants.

Equation (2) is an exact solution of equation (1) when R.

is a constant and X, , z. are oven by equation (2). )n this

case the hamiItorian (4) aquires the form

/(.. ) (1 -sech Ro ( 1-cos ,)4 sech2 Ro( ho co(' t2 )3dx (5

e.,ere the normal ization constan ts a, , a. have been chosen t

cive zero energy at I' = ± 2n. in order to characterize sma]l

Cscillations around solution (2), we observe that for a

"wobbler" ( ie. an oscillating 4n-kink) the distance bet-.een

+he t ..o s i ne-Gor don s T I i tcns c i 1 1a .- es around t he i i- s t a t .c

separation 2R,. It is there-fore natural to assume for sucl- a

so3ution an analytical expression givern by equation (2) but

iith P. rEplaced by a time dependent function R(tY cccrdirg

to

T x (>. R t)) 4 -tan sinh sech R(t)] .

Fg t titut.rri (6) i (5) and perfcr , nno the c orre-ondrz

! te a I c're c.btains aft cr some computations

I- (,G ) iE - ("F'.inh2R) P' - Y."F. , ) (7)

.. I I
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Equet'or, (7 simply represents the tota3 energy of the

I-.\','rn (6) expressed at the sum of a I inetic part and a

potential c nE (tocte the analogy with particles). We a _sn

ncte that in derivino eq. (7) the only approximAtion nade wa!:

the ansatz (6) for the oscillating 4n-kink. When 2R is

equai to the static separation 2R,. of the tw-o subsolitcns

equation (7) simply reduces to the rest mass energy of

solution (2)

,! = 1611 - R,/(S,C,)]. (C

L,here S_ = sinh R. and C,. -cosh R..

In .. _ucing the instantanecus mass

M(i = 6[l - 2R(t)/sinh(2R(t))] (!0

_= tcr (7) -quires the form

14(RR, ) = 1/2 M(t)R + V(P,R,,)

Trj study small osc )]ations around 2R , %',e let lR-RK'i.

In this case we can eypar,d the potential energy around .

F - ., + V. (-R,.) 4 1 /2 V..'_ CR-P, )2 +

C'E,- , -ir7res dernotte der\, at \,es w. th r - ecect to P t-.h .

s: r] F Ec rnr tar,-- evaIuation at R = P.).



From eq. (8) the first deri\ative of V is. easily calculated

as

VY (R-R,.) = 2C (cosh1"R/cosh:: ,.)-I][2cosh:""s nhP _sinh~coshR

-R(snh:R+_) ]/(s inh'Rccsh2 R) (13>

frcm which cr:e see that

V,. = 0)

j.e, R. is an extremum for the potential V(R,R,.).

In Fig. I V(R,R.) is plotted versus R for different values

of R., from which one see that R,,. is actually a minimum for

V. (Note also that the potential has a finite value at R=-).

By inserting equation (l) in (12) we gct

v (,R. ) z V4. + (I/2)V_ (R-R,.)2 (1

cf C Eq. (I I) becomes

H 12 M,, R, + 1/2 Y,. (R-R,..) V (

-+ere we hive Epproximated M(t) with its equilibrium value

M,_ ad reglectc-d higher order terms in R-R..

EQu&t)cn (la) is just the energy of a harmonic es,cil]tcr )n

t .e presence of an e-ter'nal constant potential. The fr'quEfnC,

is -.1--. rvaluated as

, : 'C . 2 - 2(S.C.. * R .)/E2(C,.'(SC,. - P..)) -7



trich is e'actly the same expression as in given in Ref. [7).

Ill. Arn'iarmonic effects

In this section we study the corrections to the small

oscillation frequency (17) due to anharmonic effects.

7o this end we must take into account the fact ihat the

mass cf the oscillator is a function of time (see Eq. (IC,)).

Ey differentiating Eq. (11) with respect to time and expandinc.

tie resulting equation in powers of R(t) - R. up to

third order one get

Ilo , + w, + 1/2Vo'... g-+ 1/E11o'tj-+2 j) +

+ 1/6 Vo . 0_

introducing the transformation T = L. t and expanding g and W

in Eq. (58) in power of c eccording to

-I +

LO W, E w c W; +

c-e der,,es from (19) a set of equations (after equating

s 'a I pc:ers of E) -hi ch can be then solved recursiveIy.

,'r a leongthy but standard computation (see for Example

F . II) cr,. finr lly get for the frequency th-e fullcv-'irg

. c I s i I I I 
I



- I I/I I) i- i M -)

i%,h er e

Y =" =-l :21 + 'BS . .S,.'/((CJ-..') + 16R.t21 + L2S.

(El

6= ltl44 4 28 S,..2 + 136S,. + 8S,."S/((C,.'So") -

RE, 1 4L 39 S,,2 + 3Qs,," + I I2S,. 3 C,.S..) (22)

In Fig. 2 Eq. (20) is plotted versus R..

To close this section we like to compare this result with a

numErical experiment on the arharmonic motion of an

oscil]-ating 's-kink. To this end we have numerically

integrated the DEG Equation with X,, X: in (I) given by Eq.(3}

for different values cf R.. The oscillatory motion of a

t i ~as started by takling as initial condition e)-pressc.

(L) ith (t--) = R,>'R,.. The frequency of the resulting

_scillation .as then computed by following in time the motion

of a point on the 4n-kink profile. (This wras checked to be an

&ccurate way to measure the frequency si-ice no radiation (cr

,e,-y little) t.jas generated in the system).

!r) Figs. 3 and 4 z- I3ot of the resulting frequency

,-1-!us t amplitude of the osci lation is reportEd fcr the

',!JueE f F'. -SOC--t)ve '/' of 2 and 3. *T',e stars in

"'SC 3 '.-eS- cc re-nnd to nuLImlerical results i--hile, t ,e _clid

c',, ,r e.,e ,t the theoretical values prEdictr-d by Equat)cn



(&)). We ncte that the aoreement betw.een perturbation theory

a,d e,'periments is quite good for small values of R,-1 . r-r.,

Fags. 3- it is. also clear that. the anharmonicity )n this

system start to be relevant only at large oscillation a.i.2 u~e5.

V'. Conclusion

In the present paper we have given a simple derivation

cf the small oscillation frequekicy around 4#n-k.ink solutjo_-ir

cf the double sine-Gordon system. The analysis ,'ias based on

the assumption (6) for the iave form of such oscillating

sc2ution.

Finally, a numerically experiment on anharmonic

oscillations cf An-kink solutions was performed and compared

w-.ith the predictions of a perturbation treatment, As a result

tE- find a good agreement bstt-..eer, the perturbative analysis

arid the numerical results for small oscillation amplitudes.
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Figure cepticris

F~g. I Different curves cf V(RR,,) versLus H for different

values of R,..

Fig. 2 Oscillatory frequency given by Eq. (20) plotted

versus R...

Fic. 3 Oscillatory frequency of a In-"wobber" versus

(P,-R.) = cR,. for the value R. = 2.

The stars are experimental points while the solid

curve correspond to theoretical values derived fror,

Eq

:2, 4 The same as ir, Fia. 3 but for R,. 3.
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A SIMPLE MAP DESCRIBING PHASE-LOCKING OF FLUXON

OSCILLATIONS IN LONG JOSEPHSON TUNNEL JUNCTIONS

M. Salerno& , M. R. Samuelsenb , G. FilatrellaC S. Paganod , and R. D, Parmentierr

MIDIT Center,

The Technical University of Denmark,

DK-2800 Lyngby, Denmark.

Abstract

Application of soliton perturbation theory to a Josephson junction fluxon sub-

jected to a microwave field reduces the problem of phase-locking of the fluxon

oscillation to the study of a two-dimensional functional map. Phase-locked states

correspond to fixed points of the map. The approach captures much of the

experimental phenomenology.



Interest in the phenomenon of phase-locking of fluxon oscillations in long Josephson

tunnel junctions has recently been stimulated by the possibility of employing arrays of such

long junctions as local oscillators in integrated superconductive microwave or millimeter-

wave receivers for radioastronomy and space communications C11. A complete mathematical

model of an array of fluxon oscillators would-be a system of nonlinear coupled partial dif-

ferential equations. A detailed study of such a system would, a priori, present notable

difficulties (also because the exact nature of the coupling between the individual oscillators

of such an array has not yet been well-characterized). A simpler, but related, problem ,s

to study the interaction of a single oscillator with a fixed, external microwave field C23.

Our theoretical approach to the study of this simpler problem is based on the per-

turbation analysis of fluxon dynamics pioneered by McLaughlin and Scott 13]. This pertur-

bation analysis was applied to the very same problem by Chang [4], whose work clearly

suggested the power of the method. As will be shown below, our approach reduces the

problem to the study of a discrete, two-dimensional functional map, in which, for example,

a stable phase-locked fluxon oscillation corresponds to one (or more) stable fixed point(s)

in the map. Obviously this approach reduces enormously the computational effort required

to study the problem. In spite of this drastic simplification, however, the approach suc-

ceeds remarkably in capturing, at least qualitatively, much of the experimentally observed

phenomenology.

The mathematical model used to describe the dynamics of fluxon oscillations in long

Josephson junctions is a sine-Gordon equation, modified by the addition of energy input and

dissipation terms [51. For an overlap-geometry junction an appropriate model equation is, in

normalized form

pX - tt - sinq = azt - Y, (1a)

with the boundary conditions

P X(0,t) = 9 X(L,t) = I . (1 b)

Details of the normalizations may be found in Ref. 5

Our theoretical approach to the study of phase-locking in long junctions is based on

two fundamental hypotheses:

i) The influence of an external microwave field on a long-junction oscillator is felt only

through the boundary conditions, Eq. (b), not through the p.d.e., Eq. (la), i.e., we

assume the experimental conditions to be such that the microwave field does not pene-

trate significantly the interior of the junction.
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i) The dynamics of fluxons in the interior of a junction is adequately described by the per-

turbation analysis of McLaughlin and Scott C3].

Furthermore, purely for computational convenience, we make the following simplifying

assumptions:

a) The junction length L is large compared with unity so that we can employ as a solution

ansatz a form appropriate to the infinite-length limit.

b) Only dynamic states involving a single fluxon (or antifluxon) are considered.

We follow herein the procedure first reported by McLaughlin and Scott 33 and

further elaborated by Christiansen and Olsen C63 and by Levring et al. C7]. In the infinite-

length limit, a fluxon solution of Eq. (la) is well-characterized by its momentum Pf I de-

fined as

+. c

P J = f 'cpt dx (2)

From Eqs. (la) and (2), the equation of motion for a single fluxon is

dPf-
d- -Pf + 21r 

(3)

For the pure sine-Gordon equation (a = y = 0) in the infinite-length limit, the momentum

of the single fluxon solution may be calculated explicitly as

Pro 8 /( 1 2 )1/2
Su/(1 - u ,) (4)

in which u is the propagation velocity.

The first essential ingredient of the perturbation analysis is to assume that if ai and

y in Eq. 0a) are sufficiently small, we may substitute Pf in Eq. (3) by Pfo from Eq. (4).

In this case the fluxon position X(t) is given by

t
X(t) = x0 + fud , (5)

0

where x0 is the initial position. One simple, well-known result of this procedure is that,

for given a and y, there exists an equilibrium velocity, called u. , for which energy input

and dissipation are exactly balanced. This velocity is found from the stationary solution of

Eq. (3). The result is

= 1 a/1JT)) (6)

Eq. (3) may be integrated conveniently in terms of the quantity z(t) defined as



4

The result of the integration is

zt) z (z 0 - zCO)exp(- t) , (8)

in which z 0 is the initial value of z, and zo corresponds to uco in Eq. (6). The fluxon tra-

jectory may then be found by combining Eqs. (5), (7) and (8). The result is

X x0 co lg (z2 + 1)1/2
1 1 r2 + ( 1/2

2 1/2 2 1/2)
UC o - + Z D *z0 + (z oo~ 1) (z 0  + 1) (9)0C I + Z'z~o + (z2 + 1/2 (z2 + 1)/2

The second essential ingredient of the perturbation analysis is the treatment of the

boundary condition. Eq. (b). Following Levring et al. C7], we observe that during a reflec-

tion from a boundary, due to Eq. (ib) a fluxon undergoes an energy variation AHf , given

by

AHf ± 4f (10)

For constant 1, this variation is positive at (say) the left-hand boundary and negative at

(say) the right-hand boundary. To relate this energy variation to the fluxon trajectory X(t),

we recall that the energy of a pure sine-Gordon fluxon may be calculated explicitly as

Hfo = 8/(1 - u2 )2 Pfo/u (11)

Thus, an energy variation given by Eq. (10) may be related to a velocity variation through

Eq. (11), whereupon the calculation of X(t) proceeds as before. An additional approximation

introduced here is that we can neglect the effects of phase-shift and dissipation during re-

flections [8] and that the energy variation of Eq. (10) occurs instantaneously.

We take for the term -n in Eq. (ib) the form

TI = 1 lsin( rft + &) (12)

as a model of the microwave field acting upon the junction. We define the fundamental

period T of a fluxon oscillation to be the time employed by the fluxon to complete cee

back and forth round trip along the junction. Thus, the condition for phase-locking at the

fundamental frequency is, with an obvious notation

T TT + (13)
k.k-2 ,k-I k.1.ke2 wr f

In addition, we may a priori expect to observe both harmonic and subharmonic phase-lock-
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Tm 2(14)
k.k-2 n Wrf

where m and n are integers.

Phase-locking of a fluxon oscillation to an external field is manifested experimentally

by the appearance of a constant-voltage step in the current-voltage characteristic. In

terms of our model, the height in current of such a step will be determined by how much

we can vary the parameter y without breaking the locking condition of Eq. (14).

We can now proceed to calculate the fluxon dynamics. Having specified the para-

(0) ometers a, T, L, i1o , rf and 45, we choose an arbitrary initial value, z0  . of z at x

t = 0 (setting xO in Eq. (9) to zero). By inverting (numerically) Eq. (9), i.e., by imposing

X(T ) = L. we calculate the time of flight, T0 ' 1 from x = 0 to x = L. Inserting To.1

into Eq. (8). we calculate the final value, z IF , of z at x =L, i.e., z (1)f  z(To, ). At this

point, from the energy variation, aH, of Eq. (10), we calculate a z-variation, az which,
()(1) o tx = L xlcty

when added to zf , defines a new initial value, z0  of z at x L, t T 0 1. Explicitly,

we find

(1) +(11/2 + (- ) k  sin( W t + 5) - 1 (15)
0 f r

where, in this case, k = I and t = T01 We then iterate this procedure as desired for

successive spatial intervals of length L, substituting for t the sum of the preceding times

of flight. In this way, Eqs. (8), (9) and (15), generalized to arbitrary k, constitute a dis-

(k 1)crete functional map for the quantities T k,k. and zO  Fixed points of this map corre

spond to phase-locked states of the fluxon dynamics.

Figs. I - 3 show some preliminary numerical results obtained using this approach.

Fig. 1 s' ows a portion of the current-voltage (l-V) characteristic of a junction character-

ized by a = 0.05, L = 12, subjected to a microwave field of frequency Wrf = 0.24, for dif-

ferent values of the field amplitude, iO, in the condition of phase-locking at the fundamen-

tal frequency, given by Eq. (13). The smooth curve (a) is the I-V characteristic in the

absence of a microwave field. This is essentially a plot of Eq. (6), inasmuch as the bias

cur~nt is proportional to y, and the voltage, in this case, is proportional to u The two

discontinuous curves, (b) and (c), show, respectively, the response of the junction for 10 Z 0.3

and = 0.6. Here we use the general expression for the voltage, 47T/Tkk .

Fig. 2 shows the height in current of the step of Fig. 1, measured from the center

of the step to the peak, as a function of the field amplitude, TIo. The evident linear de-
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step height on the square root of microwave power normally observed experimentally C9].

Fig. 3 indicates in more detail the dynamics of the phase-locking process. In this

figure, the fluxon frequency is defined as 21r/T .k-2 , and the drive frequency is just

(rf The power spectrum is calculated by representing the time sequence Tk~k-2 as a

sequence of unit delta functions and by taking the Fourier transform of this sequence.

Clearly evident in Fig. 3 is the fact that as the drive frequency approaches the unlocked

fluxon frequency, mixing products (the small peaks near the edges of the figure) begin to

appear. At a certain point, the fluxon frequency is pulled into synchronism with the driver,

where it remains locked for a certain interval (the central region of the figure). Beyond

this region the fluxon frequency unlocks, and mixing products are once again seen. This

behavior should be compared with Fig. 3 of Cirillo and Lloyd [2] and Fig. 3 of Monaco et

al. C1], which depict experimental recordings of the same scenario.

Our approach to the study of phase-locking of fluxon oscillations can clearly be

extended in several directions. The effects of phase-shift and energy loss during the re-

flections of the fluxon from the junction boundaries C8], which become progressively more

important for shorter junctions, can be incorporated into the analysis in a straightforward

manner. The procedure can also be applied to junctions of in-line geometry [5]; in fact,

for the in-line geometry the phase-locking map can be expressed explicitly, rather than

implicitly, thus permitting an analytic study of the existence and stability of fixed points.

Furthermore, the analysis can be extended, numerically if not analytically, to the general

condition for phase-locking, Eq. (14), as opposed to the condition for locking at the funda-

mental frequency, Eq. (13). These extensions are presently under study and will be re-

ported in the near future.
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cial support received from the European Economic Community through contract no.

St-2-0267-J-C(A) and through the ERASMUS program, from the European Research Office

of the U.S. Army through contract no. DAJA-45-85-C-0042, and from the Ministero della

Pubblica Istruzione (Italy).
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Figure Captions

Fig. i. Portion of the I-V characteristic of a junction having a = 0.05, L = 12. irradiated by

a microwave field of frequency Wrf = 0.24. Smooth curve (a): no field. Vertical

steps, curves (b) and (c): fundamental phase-locking for O = 0.3 and 1o = 0.6.

respectively.

Fig. 2. Dependence of the height in current of the step of Fig. 1 on field amplitude, 0o

Parameters: cx = 0.05, L = 12, wrf = 0.24.

Fig. 3. Dynamics of phase-locking. See text for details.
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ABSTRACT

This paper summarizes numerical and analytical work on a specific
bifurcation route to chaos in the damped, periodically driven sine-
Gordon equation. The emphasis here is on the modelling of this bi-
furcation sequence and the coordinatization of the chaotic attract-
ors by truncated modal equations. The underlying structure which
we establish and focus upon in both the p.d.e and truncated o.d.e.
systems is the existence of homoclinic orbits in an integrable,
unperturbed phase space. Thus, under weak perturbations, there ex-
ists a natural mechanism for generating chaotic dynamics. We pro-
ceed to numerically test whether these homoclinic structures are
observed in the chaotic dynamics. The upshot is a four-dimensional
truncated system of modal equations which correlates remarkably
well with the chaotic dynamics of the full p.d.e. This paper is a
condensed version of [8), based on joint work with A.R. Bishop,
R. Flesch, D.W. McLaughlin, and E.A. Overman.

Outline:

1. Bifurcations to Chaos in the Weakly Perturbed Sine-Gordon Equation.

2. A Truncated Finite Mode Ansatz in the Nonlinear Schrddinger Limit.

3. Properties of the Unperturbed Modal Equations.

4. Bifurcations to Chaos in the Perturbed Modal Equations.

5. Correlations Between the Infinite-Dimensional and Reduced Systems.

1. BIFURCATIONS TO CHAOS IN THE WEAKLY PERTURBED SINE-GORDON EQUATION

We begin with one finely tuned numerical experiment on the weakly

damped, periodically forced, sine-Gordon equation,



U - Uxx + sin u = *[- t + r cos(wt)] , (1)

with even spatial synmetry, and periodic boundary conditions of length

L = 12. The linear damping coefficient is fixed, ta - .04, the initial

condition is always chosen as a singlehump sine-Gordon breather local-

ized within the period, and the driving frequency is fixed at w = .87.

Thus, we focus on the large time (t >> 1) attractors of this system as

a function of the single bifurcation parameter, er, which is the ampli-

tude of the external driver. (Refer to (1, 2] for more extensive numeri-

cal studies.)

In this controlled experiment, we observe the following bifurca-

tion sequence in these long-time "attractors", which are specified here

by their spatial structure and temporal behavior.

.0 .01/ o 03 .I -i

spatial _ -.1 O l O K2O,

structure IoCo--"> o OK- 1OOK I

temporal tchaotic
behavior frequency-locked to

p.d.e. bifurcation diagram.

FIGURE I.

Here K. denotes a spatially flat, zero wavenumber component, K, de-

notes a period L component of wavenumber K1 = 21/L, 0,4K denotes the

nonlinear superposition of these two modes, etc. The time flow is peri-

odic with the same trequency w of the driver, and then chaotic, which

implies a broadbanded frequency spectrum. (We often observe quasiperi-



odicity in t before chaos (1, 2], but not in this specific parameter re-

gime. Apparently, the quasiperiodic states exist in this diagram, but

are either unstable or these initial conditions are not in the basin of

attraction of stable quasiperiodic states. As we see below, our modal

equations suggest the former alternative.)

The chaos here is intermittent chaos. The next figure is for t' =

.103, displaying the 3-D plot of the numerically integrated solution to

Eq. (1). At each time step, there is spatial coherence: either a breather

in the center of the interval superimposed on a flat background, a

breather localized at the ends of the interval on top of the K0 compo-

nent, or the intermediate flat K0 state. The "laminar" regions are where

the system chooses one configuration, say the breather in the middle.

The "chaotic bursts" are associated to the passage out of the laminar

state (presumably due to the buildup of a weak instability), through the

intermediate K0 configuration, and then into either of the two breather

states. This chaotic attractor consists of the set of spatial states ob-

served in Figure 2, and the chaos is this intermittent jumping between

the breathers localized in the center or the wings, through an interme-

diate spatially flat configuration.

Next we quantify this spatial mode measurement (ICO, %eoK,, etc.)

by taking uE(x,t ) at each time step t from the integration of Eq. (1),n n

and using a sine-Gordon spectral code to measure the exact nonlinear

sine-Gordon mode content in the field u6 (x, tn). These are given in Fig-

ure 3, from the same time series as Figure 2.
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Numerically computed solution 0 = u (x,t) of Eq. ()

ir = .103, 50,000 S t 5 60,000.

FIGURE 2.
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FIGURE 3a.
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FIGURE 3b.
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The predominant nonlinear modes are (Figure 4):
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The three dominant spectral configurations corresponding
to the three dominant spatial states observed in Figure 2.

FIGURE 4.

Here we have truncated to the two pure KOei 1 states (4a, 4c), and the

intermediate configuration (4b), and the dynamics is viewed as a flow

through the spatial states associated to these spectral configurations.

(We surmise the other small amplitude modes are "slaved" to this dynamics).

The upshot of all these preliminaries is that the low-dimensional

configurations in Figure 4 are rich enough to produce chaos under per-

turbations. Specifically, in (3, 4, 5) we establish the following facts

about the unperturbed, integrable sine-Gordon equation with periodic

boundary conditions.

Fact 1 The exact KOOKI, breather plus nonzero mean, solutions of sine-

Gordon, with spectrum as indicated in Figures 4a,c, are linear-

ly, neutrally stable.

Fact 2 The intermediate K0 state, corresponding to a purely oscillatory

pendulum solution, with spectrum as in Figure 4b, is linearly

exponentially unstable, with order 1 growth rate. There is pre-

cisely one unstable mode, the i mode, labelled by the complex

"double point" (the shaded square) in Figure 4b. This local lin-

earized instability is related to a global homoclinic orbit in

the sine-Gordon periodic phase space. In other words, there is

an exact sine-Gordon solutior, which asymptotically relaxes to

this flat pendulum state as Itl - -, but which is a K mode in

x. (See £5] for exact formulas.)

Thus, our thesis is: (i) these low-dimensional homoclinic struc-

tures provide a mechanism for chaos, (ii) the spectral measurement of



the perturbed flow in the chaotic regime indicates an irregular passage

through these homoclinic configurations, and (iii) thus, we may be able

to coordinatize the chaotic attractors with a low-dimensional truncation.

Our first attempt at this program is the remainder of this paper.

2. A TRUNCATED FINITE MODE ANSATZ IN THE NONLINEAR SCHRODINGER LIMIT

At frequencies w near but less than one, the sine-Gordon flow (Eq.

(1)) resonates with breather-like modes. Thus, one is naturally led to the

derivation of a nonlinear Schr~dinger envelope equation, with the bene-

fit that we explicitly factor out the driver frequency w, while at the

same time retaining integrability at the unperturbed level.
E

Let w = .87 = 1 - cw. Seek a solution u of Eq. (1) in the form

(with X = V-'*w x, T = (et)

uf = 24Z [B(X,T)e i Wt + complex conjugate] + O(E.) (2)

Then one easily finds the envelope B(X,T) satisfies:

-iBT + BXX + (IB12-1)B = i(&B+F) (3a)

where the new scaled parameters are

= 155 L = 12 , k2 = = 1.05 , (3b)

and the scaled bifurcation parameter ' is

T z 2.66 er . (3c)

By factoring out the driver frequency, we reduce to a simpler per-

turbation (fixed damping, constant driver) of the integrable nonlinear

Schr6dinger equation (Eq. (3a) with & = F = 0). Thus, steady solutions

of Eq. (3) correspond to locked periodic solutions u( of Eq. (1), T-peri-

odic solutions of Eq. (3) correspond to quasiperiodic behavior of per-

turbed sine-Gordon, and chaos is chaos.

The truncation on fully nonlinear modes of Eqs. (1) or (3) is under

development [6], and codes are being constructed to handle the inherent

complexities ([7], such as Riemann surface periods, associated theta



functions, and appropriate derivatives and averages of these functions).

In the meantime, we follow the numerical indications of the full p.d.e.

and attempt to capture the qualitative dynamical features of Eq. (1)

with a truncation on the Fourier KO and K, modes. We seek

B(X,T) = c(T) + b(T) cos(kX) , k = 21 (4)L X

insert this ansatz into the perturbed NLS equation, Eq. (3), and find

the following complex amplitude equations:

-icT + (1c1 2 ijb12-1)c + i(cb*+c*b)b = 4&c + if
1 (5)

ibT + (Ic12+ lb1 2-(1+k 2))b + (cb*+c*b)c = i6b

=- .155 .

Before detailing the predictions of this two-mode truncation, we

remark on one salient feature of these equations, and the reflected

structure in the perturbed sine-Gordon solution u' corresponding to this

approximation:

u ~ 2- '7 ((c(T) + b(T) cos (kX))e iwt + c.c] + O(.w) (6)

EE

The perturbed o.d.e.'s (Eq. (5)) admit the symetry (c, b) (c, -b),

which corresponds for u* to a translation in x by L/2. Thus, for each

fixed point (c, b) of the modal equations, corresponding to a small am-

plitude breather plus nonzero mean, there also exists another fixed

point (c, -b), reflecting the half-period translate of the breather. If

we recall Figure 2 and the surrounding discussion, the chaotic p.d.e.

dynamics is qualitatively a competition between two such states. Also,

this symmetry implies b = 0 is an invariant subspace, and for u this is

the KO intermediate state.

Another important feature of this approximation (Eq. (6)) regards

Figure 4. Namely, by varying c(T), b(T) we are able to produce all three

spectral configurations: the gap spectrum with Ke,0, the cross spectrum

with c0 si, and the K0 homoclinic configuration. The flow through these

configurations will appear in the last section.



So far, the individual qualitative features of the perturbed sine-

Gordon dynamics (Figure 2) exist in this truncated NLS approximation,

and now we focus on the associated dynamics and deeper parallels between

the full and reduced systems.

3. PROPERTIES OF THE UNPERTURBED MODAL EQUATIONS

Consistent with our interpretation of the perturbed flow (Eq. (1))

in terms of the integrable sine-Gordon phase space, we develop the un-

perturbed modal structure relevant for this paper. (See (8] for details.)

The unperturbed (6 = 0, F = 0) modal equations are:

-icT + (1c1 2 +1b1 2-1)c + i(cb*+c*b)b = 0

(7)

-ibT + (Ic12.1b12-(2+k 2 ))b + (cb*+c*b)c - 0

Property 1 The system (Eq. (7)) is an integrable, Hamiltonian system,

with two real independent integrals,{ = IC12 + 11bj18
(8)

= jic+Ibj2IcI2  Ibi_1(1+k2 )Ibi2 -icI2 + i(b2c*2 +b*c 2 )

Property 2 Symmetry considerations produce three rings of fixed points:

Ring 1 (c,b) = (e i,0) , 04(0,2n) ,

Ring 2 (c,b) = 0, e i I7(T+k} 0 *[0,2n) , (9)

,/=1i2 2-k2Ring 3 (c,b) = (ei 5 e12 /jlJ , 0 [,2n)

Property 3 Fixed point Ring 1 has a one-dimensional stable and unstable

eigenspace, with eigenvalues ±kV2-k 2 , and two zero eigen-

values. Fixed point Rings 2, 3 have a four-dimensional cen-

ter manifold.



Property 4 In Ring 1, H - , I - 1, there are heteroclinic orbits on

this energy surface which approach Ring 1 as ITI - -.

Thus, as in the unperturbed p.d.e., the K0 solutions (b B 0)

are exponentially unstable, with order 1 growth rate, and

have homoclinic orbits on their energy surfaces.

4. BIFURCATIONS OF THE PERTURBED MODAL EQUATIONS

The behavior of the unperturbed properties under the perturbation

(Eq. (5)), with & - .155, as f varies, is the crux of this paper. By

simple perturbation arguments, the perturbation "phase locks" to dis-

crete points on the Rings 1, 2, 3, for example. We will not discuss

these aspects, but rather produce the numerically generated global bi-

furcation curves (due to M. Jolly and Y. Kevrekides), along with the

stability of each branch (due to J.M. Hyman).

L-2 norm of the solution
I Z5. ~-.-----

C ,

I ID

,' .......
O. _I. -

.........-. I, ".

Iwt

I ..... I I ...:i

.io . /.3\ 0.4 0..- 0.6
1 .w .I:. "'n, parameter i

Bifurcation diagram, a = 0.155

Wdenotes a j-dimensional unstable eigenspace.

FIGURE 5.



Property 1 The curve OABFG consists of pure K. states (b 2 0). The up-

per K branch FG is the phase-locked continuation of Ring 1,

which maintains the one-dimensional unstable manifold, and

thus is the perturbed o.d.e. signature of the homoclinic

p.d.e. structures in Figures 2 and 3.

Property 2 The curve BCDE is a double curve of KeeKI fixed points, (c,b)

and (c,-b), b * 0. The double KneK I branch CD is the stable

phase-locked continuation of Ring 3, consisting of stable

breather plus mean states, related by half-period translation.

Property 3 The lower hysteresis curves CB and FB pick up an additional

unstable eigenvalue due to the perturbation.

Property 4 The key feature in this diagram is point D on the Keec I

branch, at f = .268, which corresponds to a subcritical Hopf

bifurcation. The previously stable K0eK fixed points become

two-dimensionally weakly unstable owing to the perturbation.

For F > .268, the system (Eq. (5)) develops chaotic dynamics,

as tie describe below.

(We note this model predicts that when there is a second frequency gen-

erated in u by Hopf bifurcation, it is unstable, explaining why quasi-

periodicity was not observed in the p.d.e. bifurcation diagram of Fig-

ure 1.)

Property 5 The following global fixed point connections are observed

just before Hopf bifurcation (Figure 6).

Property 6 After the Hopf bifurcation, r .268, the previously stable
±

K0 ,1 fixed points become two-dimensionally, weakly unstable.

This coincides with the onset of intermittent chaos in the

dynamics of the o.d.e's, as depicted below in Figure 7 for

r = .275, which corresponds to the p.d.e., Figures 2 and 3,

with .f = .103.
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FIGURE 6.
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Property 7 The chaQtic o.d.e. "attractor" contains the two weakly un-

stable breather plus mean states, related by a half-period

translation, and then the intermittent chaotic bursts in and

out of these metastable states. In order to correlate with

the p.d.e. scenario, Figures 2 and 3, the intermediate states

must include a passage near the K0 homoclinic structure. We

measure this next.

Property 8 During the flow in the chaotic attractor, we measure passage

near the homoclinic structure in two ways. First, we graph

h = H - ((I2/2)-I), which is zero on the homoclinic Ring 1,

and check for zero crossings of h during the intermittent

bursts (Figure 8). Also, we compute distances to each fixed

point in Figure 6 during the flow, and determine which fixed

points are being visited at each phase in the dynamics (Fig-

ure 9).
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eps2 0.050 eps4- 0.000 b20- -0.5206

Time series of h = H - (I2/2-I).

FIGURE 8.
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The upshot of this analysis is that h does have zero crossings in

the intermittent chaotic bursts, whereas h oscillates near the nonzero

value corresponding to the ct0eK fixed points during the laminar phases.

Moreover, in these bursts out of laminar regions, the phase-locked fixed

point K0lu from the homoclinic ring is approached, sometimes getting very

close to it, whereas the flow never comes within unit distance of the

other four fixed points.

Thus, the chaotic o.d.e. scenario truly reflects the qualitative

pd.e. scenario quite well. We close with one final test of this inter-

pretation.

5. CORRELATIONS BETWEEN THE INFINITE-DIMENSIONAL AND REDUCED SYSTEMS

So far, we have measured homoclinic crossing in two distinct ways:

in the perturbed p.d.e. by graphing the exact sine-Gordon spectrum of u

at each time step, and in the o.d.e. by graphing h = H - (iI2-I) and

checking for zero crossings. As a final test of this homoclinic phenom-

enon, we combine the two measurements. We take c(T n), b(T n ) during the

flow that generates h, reconstruct the perturbed sine-Gordon solution uE

by the approximation (Eq. (6)), and then compute the sine-Gordon spec-

tral measurement of uf. When h goes through a zero crossing, does the

perturbed sine-Gordon field u pass through a homoclinic spectral con-

figuration? The results appear in Figure 10.
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The correlation is surprisingly good, with errors arising only

very near to the homoclinic state. This is to be expected owing to the

linear vs. nonlinear truncation. (We expect more precision when we model

the nonlinear mode truncation.)

The mathematical analysis to support the arguments developed in

this paper and [8] will be presented elsewhere [6, 9, 10].
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